mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Add ScikitLearnRegressor; move sklean classes to their own file
This commit is contained in:
@@ -6,6 +6,9 @@ from .benchmark import BenchmarkRunner
|
||||
from .classifiers import (
|
||||
Classifier,
|
||||
Regressor,
|
||||
)
|
||||
from .classifiers.sklearn import (
|
||||
ScikitLearnRegressor,
|
||||
ScikitLearnClassifier,
|
||||
)
|
||||
from .classifiers.adaptive import AdaptiveClassifier
|
||||
|
||||
@@ -3,10 +3,9 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Any, cast
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import sklearn
|
||||
|
||||
|
||||
class Classifier(ABC):
|
||||
@@ -150,58 +149,3 @@ class Regressor(ABC):
|
||||
Returns an unfitted copy of this regressor with the same hyperparameters.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class ScikitLearnClassifier(Classifier):
|
||||
"""
|
||||
Wrapper for ScikitLearn classifiers, which makes sure inputs and outputs have the
|
||||
correct dimensions and types.
|
||||
"""
|
||||
|
||||
def __init__(self, clf: Any) -> None:
|
||||
super().__init__()
|
||||
self.inner_clf = clf
|
||||
self.constant: Optional[np.ndarray] = None
|
||||
|
||||
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||
super().fit(x_train, y_train)
|
||||
(n_samples, n_classes) = y_train.shape
|
||||
assert n_classes == 2, (
|
||||
f"Scikit-learn classifiers must have exactly two classes. "
|
||||
f"{n_classes} classes were provided instead."
|
||||
)
|
||||
|
||||
# When all samples belong to the same class, sklearn's predict_proba returns
|
||||
# an array with a single column. The following check avoid this strange
|
||||
# behavior.
|
||||
mean = cast(np.ndarray, y_train.astype(float).mean(axis=0))
|
||||
if mean.max() == 1.0:
|
||||
self.constant = mean
|
||||
return
|
||||
|
||||
self.inner_clf.fit(x_train, y_train[:, 1])
|
||||
|
||||
def predict_proba(self, x_test: np.ndarray) -> np.ndarray:
|
||||
super().predict_proba(x_test)
|
||||
n_samples = x_test.shape[0]
|
||||
if self.constant is not None:
|
||||
return np.array([self.constant for n in range(n_samples)])
|
||||
sklearn_proba = self.inner_clf.predict_proba(x_test)
|
||||
if isinstance(sklearn_proba, list):
|
||||
assert len(sklearn_proba) == self.n_classes
|
||||
for pb in sklearn_proba:
|
||||
assert isinstance(pb, np.ndarray)
|
||||
assert pb.dtype in [np.float16, np.float32, np.float64]
|
||||
assert pb.shape == (n_samples, 2)
|
||||
proba = np.hstack([pb[:, [1]] for pb in sklearn_proba])
|
||||
assert proba.shape == (n_samples, self.n_classes)
|
||||
return proba
|
||||
else:
|
||||
assert isinstance(sklearn_proba, np.ndarray)
|
||||
assert sklearn_proba.shape == (n_samples, 2)
|
||||
return sklearn_proba
|
||||
|
||||
def clone(self) -> "ScikitLearnClassifier":
|
||||
return ScikitLearnClassifier(
|
||||
clf=sklearn.base.clone(self.inner_clf),
|
||||
)
|
||||
|
||||
@@ -13,7 +13,8 @@ from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
from miplearn.classifiers import Classifier, ScikitLearnClassifier
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.sklearn import ScikitLearnClassifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -10,7 +10,8 @@ from sklearn.dummy import DummyClassifier
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
from miplearn.classifiers import Classifier, ScikitLearnClassifier
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.sklearn import ScikitLearnClassifier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
93
miplearn/classifiers/sklearn.py
Normal file
93
miplearn/classifiers/sklearn.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Optional, Any, cast
|
||||
|
||||
import numpy as np
|
||||
import sklearn
|
||||
|
||||
from miplearn.classifiers import Classifier, Regressor
|
||||
|
||||
|
||||
class ScikitLearnClassifier(Classifier):
|
||||
"""
|
||||
Wrapper for ScikitLearn classifiers, which makes sure inputs and outputs have the
|
||||
correct dimensions and types.
|
||||
"""
|
||||
|
||||
def __init__(self, clf: Any) -> None:
|
||||
super().__init__()
|
||||
self.inner_clf = clf
|
||||
self.constant: Optional[np.ndarray] = None
|
||||
|
||||
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||
super().fit(x_train, y_train)
|
||||
(n_samples, n_classes) = y_train.shape
|
||||
assert n_classes == 2, (
|
||||
f"Scikit-learn classifiers must have exactly two classes. "
|
||||
f"{n_classes} classes were provided instead."
|
||||
)
|
||||
|
||||
# When all samples belong to the same class, sklearn's predict_proba returns
|
||||
# an array with a single column. The following check avoid this strange
|
||||
# behavior.
|
||||
mean = cast(np.ndarray, y_train.astype(float).mean(axis=0))
|
||||
if mean.max() == 1.0:
|
||||
self.constant = mean
|
||||
return
|
||||
|
||||
self.inner_clf.fit(x_train, y_train[:, 1])
|
||||
|
||||
def predict_proba(self, x_test: np.ndarray) -> np.ndarray:
|
||||
super().predict_proba(x_test)
|
||||
n_samples = x_test.shape[0]
|
||||
if self.constant is not None:
|
||||
return np.array([self.constant for n in range(n_samples)])
|
||||
sklearn_proba = self.inner_clf.predict_proba(x_test)
|
||||
if isinstance(sklearn_proba, list):
|
||||
assert len(sklearn_proba) == self.n_classes
|
||||
for pb in sklearn_proba:
|
||||
assert isinstance(pb, np.ndarray)
|
||||
assert pb.dtype in [np.float16, np.float32, np.float64]
|
||||
assert pb.shape == (n_samples, 2)
|
||||
proba = np.hstack([pb[:, [1]] for pb in sklearn_proba])
|
||||
assert proba.shape == (n_samples, self.n_classes)
|
||||
return proba
|
||||
else:
|
||||
assert isinstance(sklearn_proba, np.ndarray)
|
||||
assert sklearn_proba.shape == (n_samples, 2)
|
||||
return sklearn_proba
|
||||
|
||||
def clone(self) -> "ScikitLearnClassifier":
|
||||
return ScikitLearnClassifier(
|
||||
clf=sklearn.base.clone(self.inner_clf),
|
||||
)
|
||||
|
||||
|
||||
class ScikitLearnRegressor(Regressor):
|
||||
"""
|
||||
Wrapper for ScikitLearn regressors, which makes sure inputs and outputs have the
|
||||
correct dimensions and types.
|
||||
"""
|
||||
|
||||
def __init__(self, reg: Any) -> None:
|
||||
super().__init__()
|
||||
self.inner_reg = reg
|
||||
|
||||
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||
super().fit(x_train, y_train)
|
||||
self.inner_reg.fit(x_train, y_train)
|
||||
|
||||
def predict(self, x_test: np.ndarray) -> np.ndarray:
|
||||
super().predict(x_test)
|
||||
n_samples = x_test.shape[0]
|
||||
sklearn_pred = self.inner_reg.predict(x_test)
|
||||
assert isinstance(sklearn_pred, np.ndarray)
|
||||
assert sklearn_pred.shape[0] == n_samples
|
||||
return sklearn_pred
|
||||
|
||||
def clone(self) -> "ScikitLearnRegressor":
|
||||
return ScikitLearnRegressor(
|
||||
reg=sklearn.base.clone(self.inner_reg),
|
||||
)
|
||||
@@ -1,7 +1,6 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import cast
|
||||
|
||||
from numpy.linalg import norm
|
||||
from sklearn.svm import SVC
|
||||
|
||||
@@ -6,7 +6,7 @@ import numpy as np
|
||||
from numpy.linalg import norm
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from miplearn.classifiers import ScikitLearnClassifier
|
||||
from miplearn.classifiers.sklearn import ScikitLearnClassifier
|
||||
from miplearn.classifiers.cv import CrossValidatedClassifier
|
||||
from tests.classifiers import _build_circle_training_data
|
||||
|
||||
|
||||
@@ -4,37 +4,30 @@
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
from miplearn import ScikitLearnClassifier
|
||||
from miplearn.classifiers.sklearn import ScikitLearnClassifier, ScikitLearnRegressor
|
||||
|
||||
|
||||
def test_constant_prediction():
|
||||
x_train = np.array(
|
||||
[
|
||||
[0.0, 1.0],
|
||||
[1.0, 0.0],
|
||||
]
|
||||
)
|
||||
y_train = np.array(
|
||||
[
|
||||
[True, False],
|
||||
[True, False],
|
||||
]
|
||||
)
|
||||
clf = ScikitLearnClassifier(
|
||||
KNeighborsClassifier(
|
||||
n_neighbors=1,
|
||||
)
|
||||
)
|
||||
x_train = np.array([[0.0, 1.0], [1.0, 0.0]])
|
||||
y_train = np.array([[True, False], [True, False]])
|
||||
clf = ScikitLearnClassifier(KNeighborsClassifier(n_neighbors=1))
|
||||
clf.fit(x_train, y_train)
|
||||
proba = clf.predict_proba(x_train)
|
||||
assert_array_equal(
|
||||
proba,
|
||||
np.array(
|
||||
[
|
||||
[1.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
]
|
||||
),
|
||||
np.array([[1.0, 0.0], [1.0, 0.0]]),
|
||||
)
|
||||
|
||||
|
||||
def test_regressor():
|
||||
x_train = np.array([[0.0, 1.0], [1.0, 4.0], [2.0, 2.0]])
|
||||
y_train = np.array([[1.0], [5.0], [4.0]])
|
||||
x_test = np.array([[4.0, 4.0], [0.0, 0.0]])
|
||||
clf = ScikitLearnRegressor(LinearRegression())
|
||||
clf.fit(x_train, y_train)
|
||||
y_test_actual = clf.predict(x_test)
|
||||
y_test_expected = np.array([[8.0], [0.0]])
|
||||
assert_array_equal(np.round(y_test_actual, 2), y_test_expected)
|
||||
|
||||
Reference in New Issue
Block a user