|
|
@ -7,11 +7,13 @@ from copy import deepcopy
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
|
|
|
|
from miplearn import Component
|
|
|
|
from ... import Component
|
|
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
|
|
from ...classifiers.counting import CountingClassifier
|
|
|
|
from miplearn.components import classifier_evaluation_dict
|
|
|
|
from ...components import classifier_evaluation_dict
|
|
|
|
from miplearn.extractors import InstanceIterator
|
|
|
|
from ...extractors import InstanceIterator
|
|
|
|
|
|
|
|
from .drop_redundant import DropRedundantInequalitiesStep
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
@ -46,11 +48,9 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
|
|
|
|
|
|
|
|
def before_solve(self, solver, instance, _):
|
|
|
|
def before_solve(self, solver, instance, _):
|
|
|
|
logger.info("Predicting tight LP constraints...")
|
|
|
|
logger.info("Predicting tight LP constraints...")
|
|
|
|
cids = solver.internal_solver.get_constraint_ids()
|
|
|
|
x, constraints = DropRedundantInequalitiesStep._x_test(
|
|
|
|
x, constraints = self.x(
|
|
|
|
instance,
|
|
|
|
[instance],
|
|
|
|
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
|
|
|
constraint_ids=cids,
|
|
|
|
|
|
|
|
return_constraints=True,
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
y = self.predict(x)
|
|
|
|
y = self.predict(x)
|
|
|
|
|
|
|
|
|
|
|
@ -68,7 +68,6 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
|
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
|
|
self.converted += [cid]
|
|
|
|
self.converted += [cid]
|
|
|
|
self.n_converted += 1
|
|
|
|
self.n_converted += 1
|
|
|
|
print(cid)
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.n_kept += 1
|
|
|
|
self.n_kept += 1
|
|
|
|
|
|
|
|
|
|
|
@ -100,36 +99,8 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
|
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
|
|
self.classifiers[category].fit(x[category], y[category])
|
|
|
|
self.classifiers[category].fit(x[category], y[category])
|
|
|
|
|
|
|
|
|
|
|
|
def x(
|
|
|
|
def x(self, instances):
|
|
|
|
self,
|
|
|
|
return DropRedundantInequalitiesStep._x_train(instances)
|
|
|
|
instances,
|
|
|
|
|
|
|
|
constraint_ids=None,
|
|
|
|
|
|
|
|
return_constraints=False,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
x = {}
|
|
|
|
|
|
|
|
constraints = {}
|
|
|
|
|
|
|
|
for instance in tqdm(
|
|
|
|
|
|
|
|
InstanceIterator(instances),
|
|
|
|
|
|
|
|
desc="Extract (rlx:conv_ineqs:x)",
|
|
|
|
|
|
|
|
disable=len(instances) < 5,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
if constraint_ids is not None:
|
|
|
|
|
|
|
|
cids = constraint_ids
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
cids = instance.training_data[0]["slacks"].keys()
|
|
|
|
|
|
|
|
for cid in cids:
|
|
|
|
|
|
|
|
category = instance.get_constraint_category(cid)
|
|
|
|
|
|
|
|
if category is None:
|
|
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
if category not in x:
|
|
|
|
|
|
|
|
x[category] = []
|
|
|
|
|
|
|
|
constraints[category] = []
|
|
|
|
|
|
|
|
x[category] += [instance.get_constraint_features(cid)]
|
|
|
|
|
|
|
|
constraints[category] += [cid]
|
|
|
|
|
|
|
|
if return_constraints:
|
|
|
|
|
|
|
|
return x, constraints
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def y(self, instances):
|
|
|
|
def y(self, instances):
|
|
|
|
y = {}
|
|
|
|
y = {}
|
|
|
@ -215,13 +186,18 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
is_infeasible = True
|
|
|
|
is_infeasible = True
|
|
|
|
restore(cid)
|
|
|
|
restore(cid)
|
|
|
|
elif self.check_optimality:
|
|
|
|
elif self.check_optimality:
|
|
|
|
|
|
|
|
random.shuffle(self.converted)
|
|
|
|
|
|
|
|
n_restored = 0
|
|
|
|
for cid in self.converted:
|
|
|
|
for cid in self.converted:
|
|
|
|
|
|
|
|
if n_restored >= 100:
|
|
|
|
|
|
|
|
break
|
|
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
|
|
csense = self.original_sense[cid]
|
|
|
|
csense = self.original_sense[cid]
|
|
|
|
msense = solver.internal_solver.get_sense()
|
|
|
|
msense = solver.internal_solver.get_sense()
|
|
|
|
if not check_pi(msense, csense, pi):
|
|
|
|
if not check_pi(msense, csense, pi):
|
|
|
|
is_suboptimal = True
|
|
|
|
is_suboptimal = True
|
|
|
|
restore(cid)
|
|
|
|
restore(cid)
|
|
|
|
|
|
|
|
n_restored += 1
|
|
|
|
|
|
|
|
|
|
|
|
for cid in restored:
|
|
|
|
for cid in restored:
|
|
|
|
self.converted.remove(cid)
|
|
|
|
self.converted.remove(cid)
|
|
|
|