ConvertTight: Use x function from DropRedundant

master
Alinson S. Xavier 5 years ago
parent fab7b5419b
commit 5a062ad97e
No known key found for this signature in database
GPG Key ID: A796166E4E218E02

@ -7,11 +7,13 @@ from copy import deepcopy
import numpy as np
from tqdm import tqdm
import random
from miplearn import Component
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.extractors import InstanceIterator
from ... import Component
from ...classifiers.counting import CountingClassifier
from ...components import classifier_evaluation_dict
from ...extractors import InstanceIterator
from .drop_redundant import DropRedundantInequalitiesStep
logger = logging.getLogger(__name__)
@ -46,11 +48,9 @@ class ConvertTightIneqsIntoEqsStep(Component):
def before_solve(self, solver, instance, _):
logger.info("Predicting tight LP constraints...")
cids = solver.internal_solver.get_constraint_ids()
x, constraints = self.x(
[instance],
constraint_ids=cids,
return_constraints=True,
x, constraints = DropRedundantInequalitiesStep._x_test(
instance,
constraint_ids=solver.internal_solver.get_constraint_ids(),
)
y = self.predict(x)
@ -68,7 +68,6 @@ class ConvertTightIneqsIntoEqsStep(Component):
solver.internal_solver.set_constraint_sense(cid, "=")
self.converted += [cid]
self.n_converted += 1
print(cid)
else:
self.n_kept += 1
@ -100,36 +99,8 @@ class ConvertTightIneqsIntoEqsStep(Component):
self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category])
def x(
self,
instances,
constraint_ids=None,
return_constraints=False,
):
x = {}
constraints = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (rlx:conv_ineqs:x)",
disable=len(instances) < 5,
):
if constraint_ids is not None:
cids = constraint_ids
else:
cids = instance.training_data[0]["slacks"].keys()
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
constraints[category] = []
x[category] += [instance.get_constraint_features(cid)]
constraints[category] += [cid]
if return_constraints:
return x, constraints
else:
return x
def x(self, instances):
return DropRedundantInequalitiesStep._x_train(instances)
def y(self, instances):
y = {}
@ -215,13 +186,18 @@ class ConvertTightIneqsIntoEqsStep(Component):
is_infeasible = True
restore(cid)
elif self.check_optimality:
random.shuffle(self.converted)
n_restored = 0
for cid in self.converted:
if n_restored >= 100:
break
pi = solver.internal_solver.get_dual(cid)
csense = self.original_sense[cid]
msense = solver.internal_solver.get_sense()
if not check_pi(msense, csense, pi):
is_suboptimal = True
restore(cid)
n_restored += 1
for cid in restored:
self.converted.remove(cid)

@ -103,7 +103,8 @@ class DropRedundantInequalitiesStep(Component):
self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category])
def _x_test(self, instance, constraint_ids):
@staticmethod
def _x_test(instance, constraint_ids):
x = {}
constraints = {}
cids = constraint_ids
@ -120,7 +121,8 @@ class DropRedundantInequalitiesStep(Component):
x[category] = np.array(x[category])
return x, constraints
def _x_train(self, instances):
@staticmethod
def _x_train(instances):
x = {}
for instance in tqdm(
InstanceIterator(instances),

Loading…
Cancel
Save