mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use np in Constraints.lazy; replace some get_vector
This commit is contained in:
@@ -143,7 +143,7 @@ class PrimalSolutionComponent(Component):
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
instance_features = sample.get_vector("static_instance_features")
|
||||
mip_var_values = sample.get_vector("mip_var_values")
|
||||
mip_var_values = sample.get_array("mip_var_values")
|
||||
var_features = sample.get_vector_list("lp_var_features")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_vector("static_var_categories")
|
||||
|
||||
@@ -183,7 +183,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
logger.info(f"Found {n_violated} violated lazy constraints found")
|
||||
if n_violated > 0:
|
||||
logger.info(
|
||||
"Enforcing {n_violated} lazy constraints; "
|
||||
f"Enforcing {n_violated} lazy constraints; "
|
||||
f"{n_satisfied} left in the pool..."
|
||||
)
|
||||
solver.internal_solver.add_constraints(violated_constraints)
|
||||
@@ -208,7 +208,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
constr_features = sample.get_vector_list("lp_constr_features")
|
||||
constr_names = sample.get_array("static_constr_names")
|
||||
constr_categories = sample.get_vector("static_constr_categories")
|
||||
constr_lazy = sample.get_vector("static_constr_lazy")
|
||||
constr_lazy = sample.get_array("static_constr_lazy")
|
||||
lazy_enforced = sample.get_set("mip_constr_lazy_enforced")
|
||||
if constr_features is None:
|
||||
constr_features = sample.get_vector_list("static_constr_features")
|
||||
|
||||
@@ -241,7 +241,7 @@ class FeaturesExtractor:
|
||||
else:
|
||||
lazy.append(False)
|
||||
sample.put_vector_list("static_constr_features", user_features)
|
||||
sample.put_vector("static_constr_lazy", lazy)
|
||||
sample.put_array("static_constr_lazy", np.array(lazy, dtype=bool))
|
||||
sample.put_array("static_constr_categories", np.array(categories, dtype="S"))
|
||||
|
||||
def _extract_user_features_instance(
|
||||
@@ -261,18 +261,18 @@ class FeaturesExtractor:
|
||||
f"Instance features must be a list of numbers. "
|
||||
f"Found {type(v).__name__} instead."
|
||||
)
|
||||
constr_lazy = sample.get_vector("static_constr_lazy")
|
||||
constr_lazy = sample.get_array("static_constr_lazy")
|
||||
assert constr_lazy is not None
|
||||
sample.put_vector("static_instance_features", user_features)
|
||||
sample.put_scalar("static_constr_lazy_count", sum(constr_lazy))
|
||||
sample.put_scalar("static_constr_lazy_count", int(sum(constr_lazy)))
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
def _extract_var_features_AlvLouWeh2017(self, sample: Sample) -> List:
|
||||
obj_coeffs = sample.get_vector("static_var_obj_coeffs")
|
||||
obj_sa_down = sample.get_vector("lp_var_sa_obj_down")
|
||||
obj_sa_up = sample.get_vector("lp_var_sa_obj_up")
|
||||
values = sample.get_vector(f"lp_var_values")
|
||||
obj_coeffs = sample.get_array("static_var_obj_coeffs")
|
||||
obj_sa_down = sample.get_array("lp_var_sa_obj_down")
|
||||
obj_sa_up = sample.get_array("lp_var_sa_obj_up")
|
||||
values = sample.get_array("lp_var_values")
|
||||
assert obj_coeffs is not None
|
||||
|
||||
pos_obj_coeff_sum = 0.0
|
||||
|
||||
@@ -94,21 +94,21 @@ class Sample(ABC):
|
||||
def _assert_is_scalar(self, value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, bool, int, float)):
|
||||
if isinstance(value, (str, bool, int, float, np.bytes_)):
|
||||
return
|
||||
assert False, f"scalar expected; found instead: {value}"
|
||||
assert False, f"scalar expected; found instead: {value} ({value.__class__})"
|
||||
|
||||
def _assert_is_vector(self, value: Any) -> None:
|
||||
assert isinstance(
|
||||
value, (list, np.ndarray)
|
||||
), f"list or numpy array expected; found instead: {value}"
|
||||
), f"list or numpy array expected; found instead: {value} ({value.__class__})"
|
||||
for v in value:
|
||||
self._assert_is_scalar(v)
|
||||
|
||||
def _assert_is_vector_list(self, value: Any) -> None:
|
||||
assert isinstance(
|
||||
value, (list, np.ndarray)
|
||||
), f"list or numpy array expected; found instead: {value}"
|
||||
), f"list or numpy array expected; found instead: {value} ({value.__class__})"
|
||||
for v in value:
|
||||
if v is None:
|
||||
continue
|
||||
@@ -125,7 +125,7 @@ class MemorySample(Sample):
|
||||
def __init__(
|
||||
self,
|
||||
data: Optional[Dict[str, Any]] = None,
|
||||
check_data: bool = False,
|
||||
check_data: bool = True,
|
||||
) -> None:
|
||||
if data is None:
|
||||
data = {}
|
||||
@@ -210,7 +210,7 @@ class Hdf5Sample(Sample):
|
||||
self,
|
||||
filename: str,
|
||||
mode: str = "r+",
|
||||
check_data: bool = False,
|
||||
check_data: bool = True,
|
||||
) -> None:
|
||||
self.file = h5py.File(filename, mode, libver="latest")
|
||||
self._check_data = check_data
|
||||
|
||||
@@ -70,7 +70,7 @@ class Variables:
|
||||
class Constraints:
|
||||
basis_status: Optional[np.ndarray] = None
|
||||
dual_values: Optional[np.ndarray] = None
|
||||
lazy: Optional[List[bool]] = None
|
||||
lazy: Optional[np.ndarray] = None
|
||||
lhs: Optional[List[List[Tuple[bytes, float]]]] = None
|
||||
names: Optional[np.ndarray] = None
|
||||
rhs: Optional[np.ndarray] = None
|
||||
@@ -83,15 +83,15 @@ class Constraints:
|
||||
def from_sample(sample: "Sample") -> "Constraints":
|
||||
return Constraints(
|
||||
basis_status=sample.get_array("lp_constr_basis_status"),
|
||||
dual_values=sample.get_vector("lp_constr_dual_values"),
|
||||
lazy=sample.get_vector("static_constr_lazy"),
|
||||
dual_values=sample.get_array("lp_constr_dual_values"),
|
||||
lazy=sample.get_array("static_constr_lazy"),
|
||||
# lhs=sample.get_vector("static_constr_lhs"),
|
||||
names=sample.get_array("static_constr_names"),
|
||||
rhs=sample.get_vector("static_constr_rhs"),
|
||||
sa_rhs_down=sample.get_vector("lp_constr_sa_rhs_down"),
|
||||
sa_rhs_up=sample.get_vector("lp_constr_sa_rhs_up"),
|
||||
rhs=sample.get_array("static_constr_rhs"),
|
||||
sa_rhs_down=sample.get_array("lp_constr_sa_rhs_down"),
|
||||
sa_rhs_up=sample.get_array("lp_constr_sa_rhs_up"),
|
||||
senses=sample.get_array("static_constr_senses"),
|
||||
slacks=sample.get_vector("lp_constr_slacks"),
|
||||
slacks=sample.get_array("lp_constr_slacks"),
|
||||
)
|
||||
|
||||
def __getitem__(self, selected: List[bool]) -> "Constraints":
|
||||
@@ -103,7 +103,7 @@ class Constraints:
|
||||
None if self.dual_values is None else self.dual_values[selected]
|
||||
),
|
||||
names=(None if self.names is None else self.names[selected]),
|
||||
lazy=self._filter(self.lazy, selected),
|
||||
lazy=(None if self.lazy is None else self.lazy[selected]),
|
||||
lhs=self._filter(self.lhs, selected),
|
||||
rhs=(None if self.rhs is None else self.rhs[selected]),
|
||||
sa_rhs_down=(
|
||||
|
||||
@@ -31,7 +31,7 @@ def sample() -> Sample:
|
||||
"type-b",
|
||||
"type-b",
|
||||
],
|
||||
"static_constr_lazy": [True, True, True, True, False],
|
||||
"static_constr_lazy": np.array([True, True, True, True, False]),
|
||||
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
|
||||
"static_instance_features": [5.0],
|
||||
"mip_constr_lazy_enforced": {b"c1", b"c2", b"c4"},
|
||||
|
||||
@@ -39,7 +39,7 @@ def test_knapsack() -> None:
|
||||
sample.get_vector("static_var_lower_bounds"), [0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("static_var_obj_coeffs"), [505.0, 352.0, 458.0, 220.0, 0.0]
|
||||
sample.get_array("static_var_obj_coeffs"), [505.0, 352.0, 458.0, 220.0, 0.0]
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_array("static_var_types"),
|
||||
@@ -79,7 +79,7 @@ def test_knapsack() -> None:
|
||||
sample.get_vector("static_constr_categories"),
|
||||
np.array(["eq_capacity"], dtype="S"),
|
||||
)
|
||||
assert_equals(sample.get_vector("static_constr_lazy"), [False])
|
||||
assert_equals(sample.get_array("static_constr_lazy"), np.array([False]))
|
||||
assert_equals(sample.get_vector("static_instance_features"), [67.0, 21.75])
|
||||
assert_equals(sample.get_scalar("static_constr_lazy_count"), 0)
|
||||
|
||||
@@ -92,46 +92,46 @@ def test_knapsack() -> None:
|
||||
np.array(["U", "B", "U", "L", "U"], dtype="S"),
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_reduced_costs"),
|
||||
sample.get_array("lp_var_reduced_costs"),
|
||||
[193.615385, 0.0, 187.230769, -23.692308, 13.538462],
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_sa_lb_down"),
|
||||
sample.get_array("lp_var_sa_lb_down"),
|
||||
[-inf, -inf, -inf, -0.111111, -inf],
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_sa_lb_up"),
|
||||
sample.get_array("lp_var_sa_lb_up"),
|
||||
[1.0, 0.923077, 1.0, 1.0, 67.0],
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_sa_obj_down"),
|
||||
sample.get_array("lp_var_sa_obj_down"),
|
||||
[311.384615, 317.777778, 270.769231, -inf, -13.538462],
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_sa_obj_up"),
|
||||
sample.get_array("lp_var_sa_obj_up"),
|
||||
[inf, 570.869565, inf, 243.692308, inf],
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_sa_ub_down"), [0.913043, 0.923077, 0.9, 0.0, 43.0]
|
||||
sample.get_array("lp_var_sa_ub_down"), [0.913043, 0.923077, 0.9, 0.0, 43.0]
|
||||
)
|
||||
assert_equals(sample.get_vector("lp_var_sa_ub_up"), [2.043478, inf, 2.2, inf, 69.0])
|
||||
assert_equals(sample.get_vector("lp_var_values"), [1.0, 0.923077, 1.0, 0.0, 67.0])
|
||||
assert_equals(sample.get_array("lp_var_sa_ub_up"), [2.043478, inf, 2.2, inf, 69.0])
|
||||
assert_equals(sample.get_array("lp_var_values"), [1.0, 0.923077, 1.0, 0.0, 67.0])
|
||||
assert sample.get_vector_list("lp_var_features") is not None
|
||||
assert_equals(
|
||||
sample.get_array("lp_constr_basis_status"),
|
||||
np.array(["N"], dtype="S"),
|
||||
)
|
||||
assert_equals(sample.get_vector("lp_constr_dual_values"), [13.538462])
|
||||
assert_equals(sample.get_vector("lp_constr_sa_rhs_down"), [-24.0])
|
||||
assert_equals(sample.get_vector("lp_constr_sa_rhs_up"), [2.0])
|
||||
assert_equals(sample.get_vector("lp_constr_slacks"), [0.0])
|
||||
assert_equals(sample.get_array("lp_constr_dual_values"), [13.538462])
|
||||
assert_equals(sample.get_array("lp_constr_sa_rhs_down"), [-24.0])
|
||||
assert_equals(sample.get_array("lp_constr_sa_rhs_up"), [2.0])
|
||||
assert_equals(sample.get_array("lp_constr_slacks"), [0.0])
|
||||
|
||||
# after-mip
|
||||
# -------------------------------------------------------
|
||||
solver.solve()
|
||||
extractor.extract_after_mip_features(solver, sample)
|
||||
assert_equals(sample.get_vector("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 61.0])
|
||||
assert_equals(sample.get_vector("mip_constr_slacks"), [0.0])
|
||||
assert_equals(sample.get_array("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 61.0])
|
||||
assert_equals(sample.get_array("mip_constr_slacks"), [0.0])
|
||||
|
||||
|
||||
def test_constraint_getindex() -> None:
|
||||
|
||||
@@ -28,5 +28,5 @@ def test_usage() -> None:
|
||||
sample = FileInstance(filename).get_samples()[0]
|
||||
assert sample.get_scalar("mip_lower_bound") == 1183.0
|
||||
assert sample.get_scalar("mip_upper_bound") == 1183.0
|
||||
assert len(sample.get_vector("lp_var_values")) == 5
|
||||
assert len(sample.get_vector("mip_var_values")) == 5
|
||||
assert len(sample.get_array("lp_var_values")) == 5
|
||||
assert len(sample.get_array("mip_var_values")) == 5
|
||||
|
||||
@@ -42,7 +42,7 @@ def test_instance() -> None:
|
||||
solver.solve(instance)
|
||||
assert len(instance.get_samples()) == 1
|
||||
sample = instance.get_samples()[0]
|
||||
assert_equals(sample.get_vector("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 0.0, 1.0])
|
||||
assert_equals(sample.get_array("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 0.0, 1.0])
|
||||
assert sample.get_scalar("mip_lower_bound") == 4.0
|
||||
assert sample.get_scalar("mip_upper_bound") == 4.0
|
||||
|
||||
@@ -70,7 +70,7 @@ def test_subtour() -> None:
|
||||
assert lazy_enforced is not None
|
||||
assert len(lazy_enforced) > 0
|
||||
assert_equals(
|
||||
sample.get_vector("mip_var_values"),
|
||||
sample.get_array("mip_var_values"),
|
||||
[
|
||||
1.0,
|
||||
0.0,
|
||||
|
||||
@@ -39,7 +39,7 @@ def test_learning_solver(
|
||||
sample = instance.get_samples()[0]
|
||||
|
||||
assert_equals(
|
||||
sample.get_vector("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 61.0]
|
||||
sample.get_array("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 61.0]
|
||||
)
|
||||
assert sample.get_scalar("mip_lower_bound") == 1183.0
|
||||
assert sample.get_scalar("mip_upper_bound") == 1183.0
|
||||
@@ -48,7 +48,7 @@ def test_learning_solver(
|
||||
assert len(mip_log) > 100
|
||||
|
||||
assert_equals(
|
||||
sample.get_vector("lp_var_values"), [1.0, 0.923077, 1.0, 0.0, 67.0]
|
||||
sample.get_array("lp_var_values"), [1.0, 0.923077, 1.0, 0.0, 67.0]
|
||||
)
|
||||
assert_equals(sample.get_scalar("lp_value"), 1287.923077)
|
||||
lp_log = sample.get_scalar("lp_log")
|
||||
|
||||
Reference in New Issue
Block a user