parent
6b104433be
commit
5ccd65c809
@ -1,31 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
from miplearn import Instance, GurobiPyomoSolver, LearningSolver
|
||||
from miplearn.problems.knapsack import ChallengeA
|
||||
|
||||
|
||||
class CutInstance(Instance):
|
||||
def to_model(self):
|
||||
model = pe.ConcreteModel()
|
||||
model.x = x = pe.Var([0, 1], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=x[0] + x[1], sense=pe.maximize)
|
||||
model.eq = pe.Constraint(expr=2 * x[0] + 2 * x[1] <= 3)
|
||||
return model
|
||||
|
||||
def get_instance_features(self):
|
||||
return np.zeros(0)
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
return np.zeros(0)
|
||||
|
||||
|
||||
def test_cut():
|
||||
challenge = ChallengeA()
|
||||
gurobi = GurobiPyomoSolver()
|
||||
solver = LearningSolver(solver=gurobi, time_limit=10)
|
||||
solver.solve(challenge.training_instances[0])
|
||||
# assert False
|
Loading…
Reference in new issue