|
|
|
@ -118,52 +118,72 @@ def charts():
|
|
|
|
|
sense = results.loc[0, "Sense"]
|
|
|
|
|
if sense == "min":
|
|
|
|
|
primal_column = "Relative Upper Bound"
|
|
|
|
|
obj_column = "Upper Bound"
|
|
|
|
|
predicted_obj_column = "Predicted UB"
|
|
|
|
|
else:
|
|
|
|
|
primal_column = "Relative Lower Bound"
|
|
|
|
|
obj_column = "Lower Bound"
|
|
|
|
|
predicted_obj_column = "Predicted LB"
|
|
|
|
|
|
|
|
|
|
palette={
|
|
|
|
|
"baseline": "#9b59b6",
|
|
|
|
|
"ml-exact": "#3498db",
|
|
|
|
|
"ml-heuristic": "#95a5a6"
|
|
|
|
|
}
|
|
|
|
|
fig, axes = plt.subplots(nrows=1,
|
|
|
|
|
ncols=3,
|
|
|
|
|
figsize=(10,4),
|
|
|
|
|
gridspec_kw={'width_ratios': [3, 3, 2]},
|
|
|
|
|
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
|
|
|
|
|
ncols=4,
|
|
|
|
|
figsize=(12,4),
|
|
|
|
|
gridspec_kw={'width_ratios': [2, 1, 1, 2]},
|
|
|
|
|
)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=axes[0],
|
|
|
|
|
ax=ax1,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
palette=palette,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
sns.barplot(x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=axes[0],
|
|
|
|
|
ax=ax1,
|
|
|
|
|
errwidth=0.,
|
|
|
|
|
alpha=0.3,
|
|
|
|
|
alpha=0.4,
|
|
|
|
|
palette=palette,
|
|
|
|
|
estimator=median,
|
|
|
|
|
);
|
|
|
|
|
axes[0].set(ylabel='Wallclock Time (s)')
|
|
|
|
|
axes[1].set_ylim(-0.5, 5.5)
|
|
|
|
|
ax1.set(ylabel='Wallclock Time (s)')
|
|
|
|
|
ax2.set_ylim(-0.5, 5.5)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y="Gap (%)",
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Solver"] != "ml-heuristic"],
|
|
|
|
|
ax=axes[1],
|
|
|
|
|
ax=ax2,
|
|
|
|
|
palette=palette,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
axes[2].set_ylim(0.95,1.01)
|
|
|
|
|
ax3.set_ylim(0.95,1.05)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y=primal_column,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Solver"] == "ml-heuristic"],
|
|
|
|
|
ax=axes[2],
|
|
|
|
|
ax=ax3,
|
|
|
|
|
palette=palette,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
sns.scatterplot(x=obj_column,
|
|
|
|
|
y=predicted_obj_column,
|
|
|
|
|
hue="Solver",
|
|
|
|
|
data=results[results["Solver"] == "ml-exact"],
|
|
|
|
|
ax=ax4,
|
|
|
|
|
palette=palette,
|
|
|
|
|
);
|
|
|
|
|
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
|
|
|
|
|
ax4.set_xlim(xlim)
|
|
|
|
|
ax4.set_ylim(ylim)
|
|
|
|
|
ax4.get_legend().remove()
|
|
|
|
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
plt.savefig("%s/performance.png" % basepath,
|
|
|
|
|
bbox_inches='tight',
|
|
|
|
|