mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Plot predicted objective value
This commit is contained in:
@@ -118,52 +118,72 @@ def charts():
|
||||
sense = results.loc[0, "Sense"]
|
||||
if sense == "min":
|
||||
primal_column = "Relative Upper Bound"
|
||||
obj_column = "Upper Bound"
|
||||
predicted_obj_column = "Predicted UB"
|
||||
else:
|
||||
primal_column = "Relative Lower Bound"
|
||||
obj_column = "Lower Bound"
|
||||
predicted_obj_column = "Predicted LB"
|
||||
|
||||
palette={
|
||||
"baseline": "#9b59b6",
|
||||
"ml-exact": "#3498db",
|
||||
"ml-heuristic": "#95a5a6"
|
||||
}
|
||||
fig, axes = plt.subplots(nrows=1,
|
||||
ncols=3,
|
||||
figsize=(10,4),
|
||||
gridspec_kw={'width_ratios': [3, 3, 2]},
|
||||
)
|
||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
|
||||
ncols=4,
|
||||
figsize=(12,4),
|
||||
gridspec_kw={'width_ratios': [2, 1, 1, 2]},
|
||||
)
|
||||
sns.stripplot(x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=axes[0],
|
||||
ax=ax1,
|
||||
jitter=0.25,
|
||||
palette=palette,
|
||||
size=4.0,
|
||||
);
|
||||
sns.barplot(x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=axes[0],
|
||||
ax=ax1,
|
||||
errwidth=0.,
|
||||
alpha=0.3,
|
||||
alpha=0.4,
|
||||
palette=palette,
|
||||
estimator=median,
|
||||
);
|
||||
axes[0].set(ylabel='Wallclock Time (s)')
|
||||
axes[1].set_ylim(-0.5, 5.5)
|
||||
ax1.set(ylabel='Wallclock Time (s)')
|
||||
ax2.set_ylim(-0.5, 5.5)
|
||||
sns.stripplot(x="Solver",
|
||||
y="Gap (%)",
|
||||
jitter=0.25,
|
||||
data=results[results["Solver"] != "ml-heuristic"],
|
||||
ax=axes[1],
|
||||
ax=ax2,
|
||||
palette=palette,
|
||||
size=4.0,
|
||||
);
|
||||
axes[2].set_ylim(0.95,1.01)
|
||||
ax3.set_ylim(0.95,1.05)
|
||||
sns.stripplot(x="Solver",
|
||||
y=primal_column,
|
||||
jitter=0.25,
|
||||
data=results[results["Solver"] == "ml-heuristic"],
|
||||
ax=axes[2],
|
||||
ax=ax3,
|
||||
palette=palette,
|
||||
);
|
||||
|
||||
sns.scatterplot(x=obj_column,
|
||||
y=predicted_obj_column,
|
||||
hue="Solver",
|
||||
data=results[results["Solver"] == "ml-exact"],
|
||||
ax=ax4,
|
||||
palette=palette,
|
||||
);
|
||||
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
||||
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
|
||||
ax4.set_xlim(xlim)
|
||||
ax4.set_ylim(ylim)
|
||||
ax4.get_legend().remove()
|
||||
|
||||
fig.tight_layout()
|
||||
plt.savefig("%s/performance.png" % basepath,
|
||||
bbox_inches='tight',
|
||||
|
||||
@@ -64,6 +64,8 @@ class BenchmarkRunner:
|
||||
"Nodes",
|
||||
"Mode",
|
||||
"Sense",
|
||||
"Predicted LB",
|
||||
"Predicted UB",
|
||||
])
|
||||
lb = result["Lower bound"]
|
||||
ub = result["Upper bound"]
|
||||
@@ -78,6 +80,8 @@ class BenchmarkRunner:
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
"Sense": result["Sense"],
|
||||
"Predicted LB": result["Predicted LB"],
|
||||
"Predicted UB": result["Predicted UB"],
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
|
||||
@@ -15,7 +15,7 @@ class Component(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def after_solve(self, solver, instance, model):
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
||||
@@ -38,7 +38,7 @@ class LazyConstraintsComponent(Component):
|
||||
cut = instance.build_lazy_constraint(model, v)
|
||||
solver.internal_solver.add_constraint(cut)
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
|
||||
@@ -27,8 +27,13 @@ class ObjectiveValueComponent(Component):
|
||||
instance.predicted_lb = lb
|
||||
logger.info("Predicted objective: [%.2f, %.2f]" % (lb, ub))
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
pass
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
if self.ub_regressor is not None:
|
||||
results["Predicted UB"] = instance.predicted_ub
|
||||
results["Predicted LB"] = instance.predicted_lb
|
||||
else:
|
||||
results["Predicted UB"] = None
|
||||
results["Predicted LB"] = None
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting features...")
|
||||
|
||||
@@ -135,7 +135,7 @@ class PrimalSolutionComponent(Component):
|
||||
else:
|
||||
solver.internal_solver.set_warm_start(solution)
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
|
||||
@@ -306,7 +306,7 @@ class LearningSolver:
|
||||
|
||||
logger.debug("Calling after_solve callbacks...")
|
||||
for component in self.components.values():
|
||||
component.after_solve(self, instance, model)
|
||||
component.after_solve(self, instance, model, results)
|
||||
|
||||
# Store instance for future training
|
||||
self.training_instances += [instance]
|
||||
|
||||
@@ -27,11 +27,11 @@ def test_benchmark():
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
|
||||
assert benchmark.raw_results().values.shape == (12,13)
|
||||
assert benchmark.raw_results().values.shape == (12,16)
|
||||
|
||||
benchmark.save_results("/tmp/benchmark.csv")
|
||||
assert os.path.isfile("/tmp/benchmark.csv")
|
||||
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_results("/tmp/benchmark.csv")
|
||||
assert benchmark.raw_results().values.shape == (12,13)
|
||||
assert benchmark.raw_results().values.shape == (12,16)
|
||||
|
||||
Reference in New Issue
Block a user