mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Refactor ObjectiveComponent
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import List, Dict, Union, Callable, Optional, Any, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LinearRegression
|
||||
@@ -17,7 +17,12 @@ from sklearn.metrics import (
|
||||
|
||||
from miplearn.classifiers import Regressor
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor, ObjectiveValueExtractor
|
||||
from miplearn.extractors import InstanceIterator
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.types import MIPSolveStats, TrainingSample, LearningSolveStats
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -29,58 +34,102 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
regressor: Regressor = LinearRegression(),
|
||||
lb_regressor: Callable[[], Regressor] = LinearRegression,
|
||||
ub_regressor: Callable[[], Regressor] = LinearRegression,
|
||||
) -> None:
|
||||
self.ub_regressor = None
|
||||
self.lb_regressor = None
|
||||
self.regressor_prototype = regressor
|
||||
self.ub_regressor: Optional[Regressor] = None
|
||||
self.lb_regressor: Optional[Regressor] = None
|
||||
self.lb_regressor_factory = lb_regressor
|
||||
self.ub_regressor_factory = ub_regressor
|
||||
self._predicted_ub: Optional[float] = None
|
||||
self._predicted_lb: Optional[float] = None
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
def before_solve(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
) -> None:
|
||||
if self.ub_regressor is not None:
|
||||
logger.info("Predicting optimal value...")
|
||||
lb, ub = self.predict([instance])[0]
|
||||
instance.predicted_ub = ub
|
||||
instance.predicted_lb = lb
|
||||
logger.info("Predicted values: lb=%.2f, ub=%.2f" % (lb, ub))
|
||||
pred = self.predict([instance])
|
||||
self._predicted_lb = pred["Upper bound"][0]
|
||||
self._predicted_ub = pred["Lower bound"][0]
|
||||
logger.info(
|
||||
"Predicted values: lb=%.2f, ub=%.2f"
|
||||
% (
|
||||
self._predicted_lb,
|
||||
self._predicted_ub,
|
||||
)
|
||||
)
|
||||
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
if self.ub_regressor is not None:
|
||||
stats["Predicted UB"] = instance.predicted_ub
|
||||
stats["Predicted LB"] = instance.predicted_lb
|
||||
else:
|
||||
stats["Predicted UB"] = None
|
||||
stats["Predicted LB"] = None
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
if self._predicted_ub is not None:
|
||||
stats["Objective: predicted UB"] = self._predicted_ub
|
||||
if self._predicted_lb is not None:
|
||||
stats["Objective: predicted LB"] = self._predicted_lb
|
||||
|
||||
def fit(self, training_instances):
|
||||
def fit(self, training_instances: Union[List[str], List[Instance]]) -> None:
|
||||
self.lb_regressor = self.lb_regressor_factory()
|
||||
self.ub_regressor = self.ub_regressor_factory()
|
||||
logger.debug("Extracting features...")
|
||||
features = InstanceFeaturesExtractor().extract(training_instances)
|
||||
ub = ObjectiveValueExtractor(kind="upper bound").extract(training_instances)
|
||||
lb = ObjectiveValueExtractor(kind="lower bound").extract(training_instances)
|
||||
assert ub.shape == (len(training_instances), 1)
|
||||
assert lb.shape == (len(training_instances), 1)
|
||||
self.ub_regressor = deepcopy(self.regressor_prototype)
|
||||
self.lb_regressor = deepcopy(self.regressor_prototype)
|
||||
x_train = self.x(training_instances)
|
||||
y_train = self.y(training_instances)
|
||||
logger.debug("Fitting lb_regressor...")
|
||||
self.lb_regressor.fit(x_train, y_train["Lower bound"])
|
||||
logger.debug("Fitting ub_regressor...")
|
||||
self.ub_regressor.fit(features, ub.ravel())
|
||||
logger.debug("Fitting ub_regressor...")
|
||||
self.lb_regressor.fit(features, lb.ravel())
|
||||
self.ub_regressor.fit(x_train, y_train["Upper bound"])
|
||||
|
||||
def predict(self, instances):
|
||||
features = InstanceFeaturesExtractor().extract(instances)
|
||||
lb = self.lb_regressor.predict(features)
|
||||
ub = self.ub_regressor.predict(features)
|
||||
assert lb.shape == (len(instances),)
|
||||
assert ub.shape == (len(instances),)
|
||||
return np.array([lb, ub]).T
|
||||
def predict(
|
||||
self,
|
||||
instances: Union[List[str], List[Instance]],
|
||||
) -> Dict[str, List[float]]:
|
||||
assert self.lb_regressor is not None
|
||||
assert self.ub_regressor is not None
|
||||
x_test = self.x(instances)
|
||||
(n_samples, n_features) = x_test.shape
|
||||
lb = self.lb_regressor.predict(x_test)
|
||||
ub = self.ub_regressor.predict(x_test)
|
||||
assert lb.shape == (n_samples, 1)
|
||||
assert ub.shape == (n_samples, 1)
|
||||
return {
|
||||
"Lower bound": lb.ravel().tolist(),
|
||||
"Upper bound": ub.ravel().tolist(),
|
||||
}
|
||||
|
||||
def evaluate(self, instances):
|
||||
@staticmethod
|
||||
def x(instances: Union[List[str], List[Instance]]) -> np.ndarray:
|
||||
result = []
|
||||
for instance in InstanceIterator(instances):
|
||||
for _ in instance.training_data:
|
||||
instance_features = instance.get_instance_features()
|
||||
result.append(instance_features)
|
||||
return np.array(result)
|
||||
|
||||
@staticmethod
|
||||
def y(instances: Union[List[str], List[Instance]]) -> Dict[str, np.ndarray]:
|
||||
ub: List[List[float]] = []
|
||||
lb: List[List[float]] = []
|
||||
for instance in InstanceIterator(instances):
|
||||
for sample in instance.training_data:
|
||||
lb.append([sample["Lower bound"]])
|
||||
ub.append([sample["Upper bound"]])
|
||||
return {
|
||||
"Lower bound": np.array(lb),
|
||||
"Upper bound": np.array(ub),
|
||||
}
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
instances: Union[List[str], List[Instance]],
|
||||
) -> Dict[str, Dict[str, float]]:
|
||||
y_pred = self.predict(instances)
|
||||
y_true = np.array(
|
||||
[
|
||||
@@ -88,11 +137,12 @@ class ObjectiveValueComponent(Component):
|
||||
inst.training_data[0]["Lower bound"],
|
||||
inst.training_data[0]["Upper bound"],
|
||||
]
|
||||
for inst in instances
|
||||
for inst in InstanceIterator(instances)
|
||||
]
|
||||
)
|
||||
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
|
||||
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
|
||||
y_pred_lb = y_pred["Lower bound"]
|
||||
y_pred_ub = y_pred["Upper bound"]
|
||||
y_true_lb, y_true_ub = y_true[:, 1], y_true[:, 1]
|
||||
ev = {
|
||||
"Lower bound": {
|
||||
"Mean squared error": mean_squared_error(y_true_lb, y_pred_lb),
|
||||
|
||||
@@ -117,9 +117,6 @@ class MaxWeightStableSetInstance(Instance):
|
||||
model.clique_eqs.add(sum(model.x[i] for i in clique) <= 1)
|
||||
return model
|
||||
|
||||
def get_instance_features(self):
|
||||
return np.ones(0)
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
neighbor_weights = [0] * 15
|
||||
neighbor_degrees = [100] * 15
|
||||
|
||||
@@ -65,6 +65,8 @@ LearningSolveStats = TypedDict(
|
||||
"Primal: free": int,
|
||||
"Primal: zero": int,
|
||||
"Primal: one": int,
|
||||
"Objective: predicted LB": float,
|
||||
"Objective: predicted UB": float,
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user