|
|
|
@ -3,7 +3,7 @@
|
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
from typing import List, Dict, Union, Callable, Optional, Any, TYPE_CHECKING
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
@ -17,7 +17,12 @@ from sklearn.metrics import (
|
|
|
|
|
|
|
|
|
|
from miplearn.classifiers import Regressor
|
|
|
|
|
from miplearn.components.component import Component
|
|
|
|
|
from miplearn.extractors import InstanceFeaturesExtractor, ObjectiveValueExtractor
|
|
|
|
|
from miplearn.extractors import InstanceIterator
|
|
|
|
|
from miplearn.instance import Instance
|
|
|
|
|
from miplearn.types import MIPSolveStats, TrainingSample, LearningSolveStats
|
|
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
@ -29,58 +34,102 @@ class ObjectiveValueComponent(Component):
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
regressor: Regressor = LinearRegression(),
|
|
|
|
|
lb_regressor: Callable[[], Regressor] = LinearRegression,
|
|
|
|
|
ub_regressor: Callable[[], Regressor] = LinearRegression,
|
|
|
|
|
) -> None:
|
|
|
|
|
self.ub_regressor = None
|
|
|
|
|
self.lb_regressor = None
|
|
|
|
|
self.regressor_prototype = regressor
|
|
|
|
|
self.ub_regressor: Optional[Regressor] = None
|
|
|
|
|
self.lb_regressor: Optional[Regressor] = None
|
|
|
|
|
self.lb_regressor_factory = lb_regressor
|
|
|
|
|
self.ub_regressor_factory = ub_regressor
|
|
|
|
|
self._predicted_ub: Optional[float] = None
|
|
|
|
|
self._predicted_lb: Optional[float] = None
|
|
|
|
|
|
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
|
|
|
def before_solve(
|
|
|
|
|
self,
|
|
|
|
|
solver: "LearningSolver",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
model: Any,
|
|
|
|
|
) -> None:
|
|
|
|
|
if self.ub_regressor is not None:
|
|
|
|
|
logger.info("Predicting optimal value...")
|
|
|
|
|
lb, ub = self.predict([instance])[0]
|
|
|
|
|
instance.predicted_ub = ub
|
|
|
|
|
instance.predicted_lb = lb
|
|
|
|
|
logger.info("Predicted values: lb=%.2f, ub=%.2f" % (lb, ub))
|
|
|
|
|
pred = self.predict([instance])
|
|
|
|
|
self._predicted_lb = pred["Upper bound"][0]
|
|
|
|
|
self._predicted_ub = pred["Lower bound"][0]
|
|
|
|
|
logger.info(
|
|
|
|
|
"Predicted values: lb=%.2f, ub=%.2f"
|
|
|
|
|
% (
|
|
|
|
|
self._predicted_lb,
|
|
|
|
|
self._predicted_ub,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def after_solve(
|
|
|
|
|
self,
|
|
|
|
|
solver,
|
|
|
|
|
instance,
|
|
|
|
|
model,
|
|
|
|
|
stats,
|
|
|
|
|
training_data,
|
|
|
|
|
):
|
|
|
|
|
if self.ub_regressor is not None:
|
|
|
|
|
stats["Predicted UB"] = instance.predicted_ub
|
|
|
|
|
stats["Predicted LB"] = instance.predicted_lb
|
|
|
|
|
else:
|
|
|
|
|
stats["Predicted UB"] = None
|
|
|
|
|
stats["Predicted LB"] = None
|
|
|
|
|
solver: "LearningSolver",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
model: Any,
|
|
|
|
|
stats: LearningSolveStats,
|
|
|
|
|
training_data: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
if self._predicted_ub is not None:
|
|
|
|
|
stats["Objective: predicted UB"] = self._predicted_ub
|
|
|
|
|
if self._predicted_lb is not None:
|
|
|
|
|
stats["Objective: predicted LB"] = self._predicted_lb
|
|
|
|
|
|
|
|
|
|
def fit(self, training_instances):
|
|
|
|
|
def fit(self, training_instances: Union[List[str], List[Instance]]) -> None:
|
|
|
|
|
self.lb_regressor = self.lb_regressor_factory()
|
|
|
|
|
self.ub_regressor = self.ub_regressor_factory()
|
|
|
|
|
logger.debug("Extracting features...")
|
|
|
|
|
features = InstanceFeaturesExtractor().extract(training_instances)
|
|
|
|
|
ub = ObjectiveValueExtractor(kind="upper bound").extract(training_instances)
|
|
|
|
|
lb = ObjectiveValueExtractor(kind="lower bound").extract(training_instances)
|
|
|
|
|
assert ub.shape == (len(training_instances), 1)
|
|
|
|
|
assert lb.shape == (len(training_instances), 1)
|
|
|
|
|
self.ub_regressor = deepcopy(self.regressor_prototype)
|
|
|
|
|
self.lb_regressor = deepcopy(self.regressor_prototype)
|
|
|
|
|
logger.debug("Fitting ub_regressor...")
|
|
|
|
|
self.ub_regressor.fit(features, ub.ravel())
|
|
|
|
|
x_train = self.x(training_instances)
|
|
|
|
|
y_train = self.y(training_instances)
|
|
|
|
|
logger.debug("Fitting lb_regressor...")
|
|
|
|
|
self.lb_regressor.fit(x_train, y_train["Lower bound"])
|
|
|
|
|
logger.debug("Fitting ub_regressor...")
|
|
|
|
|
self.lb_regressor.fit(features, lb.ravel())
|
|
|
|
|
self.ub_regressor.fit(x_train, y_train["Upper bound"])
|
|
|
|
|
|
|
|
|
|
def predict(self, instances):
|
|
|
|
|
features = InstanceFeaturesExtractor().extract(instances)
|
|
|
|
|
lb = self.lb_regressor.predict(features)
|
|
|
|
|
ub = self.ub_regressor.predict(features)
|
|
|
|
|
assert lb.shape == (len(instances),)
|
|
|
|
|
assert ub.shape == (len(instances),)
|
|
|
|
|
return np.array([lb, ub]).T
|
|
|
|
|
def predict(
|
|
|
|
|
self,
|
|
|
|
|
instances: Union[List[str], List[Instance]],
|
|
|
|
|
) -> Dict[str, List[float]]:
|
|
|
|
|
assert self.lb_regressor is not None
|
|
|
|
|
assert self.ub_regressor is not None
|
|
|
|
|
x_test = self.x(instances)
|
|
|
|
|
(n_samples, n_features) = x_test.shape
|
|
|
|
|
lb = self.lb_regressor.predict(x_test)
|
|
|
|
|
ub = self.ub_regressor.predict(x_test)
|
|
|
|
|
assert lb.shape == (n_samples, 1)
|
|
|
|
|
assert ub.shape == (n_samples, 1)
|
|
|
|
|
return {
|
|
|
|
|
"Lower bound": lb.ravel().tolist(),
|
|
|
|
|
"Upper bound": ub.ravel().tolist(),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def x(instances: Union[List[str], List[Instance]]) -> np.ndarray:
|
|
|
|
|
result = []
|
|
|
|
|
for instance in InstanceIterator(instances):
|
|
|
|
|
for _ in instance.training_data:
|
|
|
|
|
instance_features = instance.get_instance_features()
|
|
|
|
|
result.append(instance_features)
|
|
|
|
|
return np.array(result)
|
|
|
|
|
|
|
|
|
|
def evaluate(self, instances):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def y(instances: Union[List[str], List[Instance]]) -> Dict[str, np.ndarray]:
|
|
|
|
|
ub: List[List[float]] = []
|
|
|
|
|
lb: List[List[float]] = []
|
|
|
|
|
for instance in InstanceIterator(instances):
|
|
|
|
|
for sample in instance.training_data:
|
|
|
|
|
lb.append([sample["Lower bound"]])
|
|
|
|
|
ub.append([sample["Upper bound"]])
|
|
|
|
|
return {
|
|
|
|
|
"Lower bound": np.array(lb),
|
|
|
|
|
"Upper bound": np.array(ub),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def evaluate(
|
|
|
|
|
self,
|
|
|
|
|
instances: Union[List[str], List[Instance]],
|
|
|
|
|
) -> Dict[str, Dict[str, float]]:
|
|
|
|
|
y_pred = self.predict(instances)
|
|
|
|
|
y_true = np.array(
|
|
|
|
|
[
|
|
|
|
@ -88,11 +137,12 @@ class ObjectiveValueComponent(Component):
|
|
|
|
|
inst.training_data[0]["Lower bound"],
|
|
|
|
|
inst.training_data[0]["Upper bound"],
|
|
|
|
|
]
|
|
|
|
|
for inst in instances
|
|
|
|
|
for inst in InstanceIterator(instances)
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
|
|
|
|
|
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
|
|
|
|
|
y_pred_lb = y_pred["Lower bound"]
|
|
|
|
|
y_pred_ub = y_pred["Upper bound"]
|
|
|
|
|
y_true_lb, y_true_ub = y_true[:, 1], y_true[:, 1]
|
|
|
|
|
ev = {
|
|
|
|
|
"Lower bound": {
|
|
|
|
|
"Mean squared error": mean_squared_error(y_true_lb, y_pred_lb),
|
|
|
|
|