|
|
|
@ -127,7 +127,9 @@ class FeaturesExtractor:
|
|
|
|
|
]:
|
|
|
|
|
if f is not None:
|
|
|
|
|
lp_var_features_list.append(f.reshape(-1, 1))
|
|
|
|
|
sample.put_array("lp_var_features", np.hstack(lp_var_features_list))
|
|
|
|
|
lp_var_features = np.hstack(lp_var_features_list)
|
|
|
|
|
_fix_infinity(lp_var_features)
|
|
|
|
|
sample.put_array("lp_var_features", lp_var_features)
|
|
|
|
|
|
|
|
|
|
# Constraint features
|
|
|
|
|
lp_constr_features_list = []
|
|
|
|
@ -142,7 +144,9 @@ class FeaturesExtractor:
|
|
|
|
|
]:
|
|
|
|
|
if f is not None:
|
|
|
|
|
lp_constr_features_list.append(f.reshape(-1, 1))
|
|
|
|
|
sample.put_array("lp_constr_features", np.hstack(lp_constr_features_list))
|
|
|
|
|
lp_constr_features = np.hstack(lp_constr_features_list)
|
|
|
|
|
_fix_infinity(lp_constr_features)
|
|
|
|
|
sample.put_array("lp_constr_features", lp_constr_features)
|
|
|
|
|
|
|
|
|
|
# Build lp_instance_features
|
|
|
|
|
static_instance_features = sample.get_array("static_instance_features")
|
|
|
|
@ -311,73 +315,83 @@ class FeaturesExtractor:
|
|
|
|
|
obj_sa_down = sample.get_array("lp_var_sa_obj_down")
|
|
|
|
|
obj_sa_up = sample.get_array("lp_var_sa_obj_up")
|
|
|
|
|
values = sample.get_array("lp_var_values")
|
|
|
|
|
|
|
|
|
|
assert obj_coeffs is not None
|
|
|
|
|
obj_coeffs = obj_coeffs.astype(float)
|
|
|
|
|
_fix_infinity(obj_coeffs)
|
|
|
|
|
nvars = len(obj_coeffs)
|
|
|
|
|
|
|
|
|
|
if obj_sa_down is not None:
|
|
|
|
|
obj_sa_down = obj_sa_down.astype(float)
|
|
|
|
|
_fix_infinity(obj_sa_down)
|
|
|
|
|
|
|
|
|
|
if obj_sa_up is not None:
|
|
|
|
|
obj_sa_up = obj_sa_up.astype(float)
|
|
|
|
|
_fix_infinity(obj_sa_up)
|
|
|
|
|
|
|
|
|
|
pos_obj_coeff_sum = 0.0
|
|
|
|
|
neg_obj_coeff_sum = 0.0
|
|
|
|
|
for coeff in obj_coeffs:
|
|
|
|
|
if coeff > 0:
|
|
|
|
|
pos_obj_coeff_sum += coeff
|
|
|
|
|
if coeff < 0:
|
|
|
|
|
neg_obj_coeff_sum += -coeff
|
|
|
|
|
|
|
|
|
|
features = []
|
|
|
|
|
for i in range(len(obj_coeffs)):
|
|
|
|
|
f: List[float] = []
|
|
|
|
|
if obj_coeffs is not None:
|
|
|
|
|
if values is not None:
|
|
|
|
|
values = values.astype(float)
|
|
|
|
|
_fix_infinity(values)
|
|
|
|
|
|
|
|
|
|
pos_obj_coeffs_sum = obj_coeffs[obj_coeffs > 0].sum()
|
|
|
|
|
neg_obj_coeffs_sum = -obj_coeffs[obj_coeffs < 0].sum()
|
|
|
|
|
|
|
|
|
|
curr = 0
|
|
|
|
|
max_n_features = 8
|
|
|
|
|
features = np.zeros((nvars, max_n_features))
|
|
|
|
|
with np.errstate(divide="ignore", invalid="ignore"):
|
|
|
|
|
# Feature 1
|
|
|
|
|
f.append(np.sign(obj_coeffs[i]))
|
|
|
|
|
features[:, curr] = np.sign(obj_coeffs)
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Feature 2
|
|
|
|
|
if pos_obj_coeff_sum > 0:
|
|
|
|
|
f.append(abs(obj_coeffs[i]) / pos_obj_coeff_sum)
|
|
|
|
|
else:
|
|
|
|
|
f.append(0.0)
|
|
|
|
|
if abs(pos_obj_coeffs_sum) > 0:
|
|
|
|
|
features[:, curr] = np.abs(obj_coeffs) / pos_obj_coeffs_sum
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Feature 3
|
|
|
|
|
if neg_obj_coeff_sum > 0:
|
|
|
|
|
f.append(abs(obj_coeffs[i]) / neg_obj_coeff_sum)
|
|
|
|
|
else:
|
|
|
|
|
f.append(0.0)
|
|
|
|
|
if abs(neg_obj_coeffs_sum) > 0:
|
|
|
|
|
features[:, curr] = np.abs(obj_coeffs) / neg_obj_coeffs_sum
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
if values is not None:
|
|
|
|
|
# Feature 37
|
|
|
|
|
f.append(
|
|
|
|
|
min(
|
|
|
|
|
values[i] - np.floor(values[i]),
|
|
|
|
|
np.ceil(values[i]) - values[i],
|
|
|
|
|
)
|
|
|
|
|
if values is not None:
|
|
|
|
|
features[:, curr] = np.minimum(
|
|
|
|
|
values - np.floor(values),
|
|
|
|
|
np.ceil(values) - values,
|
|
|
|
|
)
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Feature 44
|
|
|
|
|
if obj_sa_up is not None:
|
|
|
|
|
assert obj_sa_down is not None
|
|
|
|
|
assert obj_coeffs is not None
|
|
|
|
|
|
|
|
|
|
# Convert inf into large finite numbers
|
|
|
|
|
sd = max(-1e20, obj_sa_down[i])
|
|
|
|
|
su = min(1e20, obj_sa_up[i])
|
|
|
|
|
obj = obj_coeffs[i]
|
|
|
|
|
features[:, curr] = np.sign(obj_sa_up)
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Features 44 and 46
|
|
|
|
|
f.append(np.sign(obj_sa_up[i]))
|
|
|
|
|
f.append(np.sign(obj_sa_down[i]))
|
|
|
|
|
# Feature 46
|
|
|
|
|
if obj_sa_down is not None:
|
|
|
|
|
features[:, curr] = np.sign(obj_sa_down)
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Feature 47
|
|
|
|
|
csign = np.sign(obj)
|
|
|
|
|
if csign != 0 and ((obj - sd) / csign) > 0.001:
|
|
|
|
|
f.append(log((obj - sd) / csign))
|
|
|
|
|
else:
|
|
|
|
|
f.append(0.0)
|
|
|
|
|
if obj_sa_down is not None:
|
|
|
|
|
features[:, curr] = np.log(
|
|
|
|
|
obj_coeffs - obj_sa_down / np.sign(obj_coeffs)
|
|
|
|
|
)
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
# Feature 48
|
|
|
|
|
if csign != 0 and ((su - obj) / csign) > 0.001:
|
|
|
|
|
f.append(log((su - obj) / csign))
|
|
|
|
|
else:
|
|
|
|
|
f.append(0.0)
|
|
|
|
|
if obj_sa_up is not None:
|
|
|
|
|
features[:, curr] = np.log(obj_coeffs - obj_sa_up / np.sign(obj_coeffs))
|
|
|
|
|
curr += 1
|
|
|
|
|
|
|
|
|
|
features = features[:, 0:curr]
|
|
|
|
|
_fix_infinity(features)
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
|
for (i, v) in enumerate(f):
|
|
|
|
|
if not isfinite(v):
|
|
|
|
|
f[i] = 0.0
|
|
|
|
|
|
|
|
|
|
features.append(f)
|
|
|
|
|
return np.array(features, dtype=float)
|
|
|
|
|
def _fix_infinity(m: np.ndarray) -> None:
|
|
|
|
|
masked = np.ma.masked_invalid(m)
|
|
|
|
|
max_values = np.max(masked, axis=0)
|
|
|
|
|
min_values = np.min(masked, axis=0)
|
|
|
|
|
m[:] = np.maximum(np.minimum(m, max_values), min_values)
|
|
|
|
|
m[np.isnan(m)] = 0.0
|
|
|
|
|