mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 10:28:52 -06:00
Modularize LearningSolver into components; implement branch-priority
This commit is contained in:
63
miplearn/branching.py
Normal file
63
miplearn/branching.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from . import Component
|
||||
from .transformers import PerVariableTransformer
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BranchPriorityComponent(Component):
|
||||
def __init__(self,
|
||||
initial_priority=None,
|
||||
collect_training_data=True):
|
||||
self.priority = initial_priority
|
||||
self.transformer = PerVariableTransformer()
|
||||
self.collect_training_data = collect_training_data
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
assert solver.is_persistent, "BranchPriorityComponent requires a persistent solver"
|
||||
var_split = self.transformer.split_variables(instance, model)
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
if self.priority is not None:
|
||||
from gurobipy import GRB
|
||||
for (i, (var, index)) in enumerate(var_index_pairs):
|
||||
gvar = solver.internal_solver._pyomo_var_to_solver_var_map[var[index]]
|
||||
gvar.setAttr(GRB.Attr.BranchPriority, int(self.priority[index]))
|
||||
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
if self.collect_training_data:
|
||||
import subprocess, tempfile, os
|
||||
src_dirname = os.path.dirname(os.path.realpath(__file__))
|
||||
model_file = tempfile.NamedTemporaryFile(suffix=".lp")
|
||||
priority_file = tempfile.NamedTemporaryFile()
|
||||
solver.internal_solver.write(model_file.name)
|
||||
subprocess.run(["julia",
|
||||
"%s/scripts/branchpriority.jl" % src_dirname,
|
||||
model_file.name,
|
||||
priority_file.name],
|
||||
check=True)
|
||||
self._merge(np.genfromtxt(priority_file.name,
|
||||
delimiter=',',
|
||||
dtype=int))
|
||||
|
||||
|
||||
def fit(self, solver):
|
||||
pass
|
||||
|
||||
|
||||
def merge(self, other):
|
||||
if other.priority is not None:
|
||||
self._merge(other.priority)
|
||||
|
||||
|
||||
def _merge(self, priority):
|
||||
assert isinstance(priority, np.ndarray)
|
||||
if self.priority is None:
|
||||
self.priority = priority
|
||||
else:
|
||||
assert self.priority.shape == priority.shape
|
||||
self.priority += priority
|
||||
Reference in New Issue
Block a user