Modularize LearningSolver into components; implement branch-priority

This commit is contained in:
2020-01-28 13:35:51 -06:00
parent 897743fce7
commit 6a29411df3
11 changed files with 348 additions and 141 deletions

63
miplearn/branching.py Normal file
View File

@@ -0,0 +1,63 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from abc import ABC, abstractmethod
import numpy as np
class BranchPriorityComponent(Component):
def __init__(self,
initial_priority=None,
collect_training_data=True):
self.priority = initial_priority
self.transformer = PerVariableTransformer()
self.collect_training_data = collect_training_data
def before_solve(self, solver, instance, model):
assert solver.is_persistent, "BranchPriorityComponent requires a persistent solver"
var_split = self.transformer.split_variables(instance, model)
for category in var_split.keys():
var_index_pairs = var_split[category]
if self.priority is not None:
from gurobipy import GRB
for (i, (var, index)) in enumerate(var_index_pairs):
gvar = solver.internal_solver._pyomo_var_to_solver_var_map[var[index]]
gvar.setAttr(GRB.Attr.BranchPriority, int(self.priority[index]))
def after_solve(self, solver, instance, model):
if self.collect_training_data:
import subprocess, tempfile, os
src_dirname = os.path.dirname(os.path.realpath(__file__))
model_file = tempfile.NamedTemporaryFile(suffix=".lp")
priority_file = tempfile.NamedTemporaryFile()
solver.internal_solver.write(model_file.name)
subprocess.run(["julia",
"%s/scripts/branchpriority.jl" % src_dirname,
model_file.name,
priority_file.name],
check=True)
self._merge(np.genfromtxt(priority_file.name,
delimiter=',',
dtype=int))
def fit(self, solver):
pass
def merge(self, other):
if other.priority is not None:
self._merge(other.priority)
def _merge(self, priority):
assert isinstance(priority, np.ndarray)
if self.priority is None:
self.priority = priority
else:
assert self.priority.shape == priority.shape
self.priority += priority