Modularize LearningSolver into components; implement branch-priority

This commit is contained in:
2020-01-28 13:35:51 -06:00
parent 897743fce7
commit 6a29411df3
11 changed files with 348 additions and 141 deletions

View File

@@ -19,15 +19,16 @@ def test_benchmark():
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.save("data.bin")
training_solver.fit()
training_solver.save_state("data.bin")
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(ws_predictor=None),
"Strategy B": LearningSolver(ws_predictor=None),
"Strategy A": LearningSolver(),
"Strategy B": LearningSolver(),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_fit("data.bin")
benchmark.load_state("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
assert benchmark.raw_results().values.shape == (12,12)

View File

@@ -4,6 +4,8 @@
from miplearn import LearningSolver
from miplearn.problems.knapsack import KnapsackInstance2
from miplearn.branching import BranchPriorityComponent
from miplearn.warmstart import WarmStartComponent
import numpy as np
@@ -16,21 +18,29 @@ def test_solver():
solver.fit()
solver.solve(instance)
def test_solve_save_load():
def test_solve_save_load_state():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
solver = LearningSolver()
components_before = {
"warm-start": WarmStartComponent(),
"branch-priority": BranchPriorityComponent(),
}
solver = LearningSolver(components=components_before)
solver.solve(instance)
solver.fit()
solver.save("/tmp/knapsack_train.bin")
prev_x_train_len = len(solver.x_train)
prev_y_train_len = len(solver.y_train)
solver.save_state("/tmp/knapsack_train.bin")
prev_x_train_len = len(solver.components["warm-start"].x_train)
prev_y_train_len = len(solver.components["warm-start"].y_train)
solver = LearningSolver()
solver.load("/tmp/knapsack_train.bin")
assert len(solver.x_train) == prev_x_train_len
assert len(solver.y_train) == prev_y_train_len
components_after = {
"warm-start": WarmStartComponent(),
}
solver = LearningSolver(components=components_after)
solver.load_state("/tmp/knapsack_train.bin")
assert len(solver.components.keys()) == 1
assert len(solver.components["warm-start"].x_train) == prev_x_train_len
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
def test_parallel_solve():
instances = [KnapsackInstance2(weights=np.random.rand(5),
@@ -38,13 +48,18 @@ def test_parallel_solve():
capacity=3.0)
for _ in range(10)]
solver = LearningSolver()
solver.parallel_solve(instances, n_jobs=3)
assert len(solver.x_train[0]) == 10
assert len(solver.y_train[0]) == 10
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
assert len(solver.components["warm-start"].x_train[0]) == 10
assert len(solver.components["warm-start"].y_train[0]) == 10
def test_solver_random_branch_priority():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
solver = LearningSolver(branch_priority=[1, 2, 3, 4])
solver.solve(instance, tee=True)
components = {
"warm-start": BranchPriorityComponent(priority=np.array([1, 2, 3, 4])),
}
solver = LearningSolver(components=components)
solver.solve(instance)
solver.fit()