mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Modularize LearningSolver into components; implement branch-priority
This commit is contained in:
@@ -19,15 +19,16 @@ def test_benchmark():
|
||||
# Training phase...
|
||||
training_solver = LearningSolver()
|
||||
training_solver.parallel_solve(train_instances, n_jobs=10)
|
||||
training_solver.save("data.bin")
|
||||
training_solver.fit()
|
||||
training_solver.save_state("data.bin")
|
||||
|
||||
# Test phase...
|
||||
test_solvers = {
|
||||
"Strategy A": LearningSolver(ws_predictor=None),
|
||||
"Strategy B": LearningSolver(ws_predictor=None),
|
||||
"Strategy A": LearningSolver(),
|
||||
"Strategy B": LearningSolver(),
|
||||
}
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_fit("data.bin")
|
||||
benchmark.load_state("data.bin")
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
|
||||
assert benchmark.raw_results().values.shape == (12,12)
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.knapsack import KnapsackInstance2
|
||||
from miplearn.branching import BranchPriorityComponent
|
||||
from miplearn.warmstart import WarmStartComponent
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -16,21 +18,29 @@ def test_solver():
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
|
||||
def test_solve_save_load():
|
||||
def test_solve_save_load_state():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
solver = LearningSolver()
|
||||
components_before = {
|
||||
"warm-start": WarmStartComponent(),
|
||||
"branch-priority": BranchPriorityComponent(),
|
||||
}
|
||||
solver = LearningSolver(components=components_before)
|
||||
solver.solve(instance)
|
||||
solver.fit()
|
||||
solver.save("/tmp/knapsack_train.bin")
|
||||
prev_x_train_len = len(solver.x_train)
|
||||
prev_y_train_len = len(solver.y_train)
|
||||
solver.save_state("/tmp/knapsack_train.bin")
|
||||
prev_x_train_len = len(solver.components["warm-start"].x_train)
|
||||
prev_y_train_len = len(solver.components["warm-start"].y_train)
|
||||
|
||||
solver = LearningSolver()
|
||||
solver.load("/tmp/knapsack_train.bin")
|
||||
assert len(solver.x_train) == prev_x_train_len
|
||||
assert len(solver.y_train) == prev_y_train_len
|
||||
components_after = {
|
||||
"warm-start": WarmStartComponent(),
|
||||
}
|
||||
solver = LearningSolver(components=components_after)
|
||||
solver.load_state("/tmp/knapsack_train.bin")
|
||||
assert len(solver.components.keys()) == 1
|
||||
assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
||||
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||
|
||||
def test_parallel_solve():
|
||||
instances = [KnapsackInstance2(weights=np.random.rand(5),
|
||||
@@ -38,13 +48,18 @@ def test_parallel_solve():
|
||||
capacity=3.0)
|
||||
for _ in range(10)]
|
||||
solver = LearningSolver()
|
||||
solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(solver.x_train[0]) == 10
|
||||
assert len(solver.y_train[0]) == 10
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
assert len(solver.components["warm-start"].x_train[0]) == 10
|
||||
assert len(solver.components["warm-start"].y_train[0]) == 10
|
||||
|
||||
def test_solver_random_branch_priority():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
solver = LearningSolver(branch_priority=[1, 2, 3, 4])
|
||||
solver.solve(instance, tee=True)
|
||||
components = {
|
||||
"warm-start": BranchPriorityComponent(priority=np.array([1, 2, 3, 4])),
|
||||
}
|
||||
solver = LearningSolver(components=components)
|
||||
solver.solve(instance)
|
||||
solver.fit()
|
||||
Reference in New Issue
Block a user