mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 18:38:51 -06:00
Modularize LearningSolver into components; implement branch-priority
This commit is contained in:
@@ -2,7 +2,11 @@
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from . import Component
|
||||
from .transformers import PerVariableTransformer
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
@@ -10,6 +14,7 @@ from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.model_selection import cross_val_score
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
|
||||
class WarmStartPredictor(ABC):
|
||||
def __init__(self, thr_clip=[0.50, 0.50]):
|
||||
self.models = [None, None]
|
||||
@@ -105,4 +110,79 @@ class KnnWarmStartPredictor(WarmStartPredictor):
|
||||
|
||||
knn = KNeighborsClassifier(n_neighbors=self.k)
|
||||
knn.fit(x_train, y_train)
|
||||
return knn
|
||||
return knn
|
||||
|
||||
|
||||
class WarmStartComponent(Component):
|
||||
def __init__(self,
|
||||
predictor_prototype=LogisticWarmStartPredictor(),
|
||||
mode="exact",
|
||||
):
|
||||
self.mode = mode
|
||||
self.transformer = PerVariableTransformer()
|
||||
self.x_train = {}
|
||||
self.y_train = {}
|
||||
self.predictors = {}
|
||||
self.predictor_prototype = predictor_prototype
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
var_split = self.transformer.split_variables(instance, model)
|
||||
x_test = {}
|
||||
|
||||
# Collect training data (x_train) and build x_test
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
x = self.transformer.transform_instance(instance, var_index_pairs)
|
||||
x_test[category] = x
|
||||
if category not in self.x_train.keys():
|
||||
self.x_train[category] = x
|
||||
else:
|
||||
assert x.shape[1] == self.x_train[category].shape[1]
|
||||
self.x_train[category] = np.vstack([self.x_train[category], x])
|
||||
|
||||
# Predict solutions
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
if category in self.predictors.keys():
|
||||
ws = self.predictors[category].predict(x_test[category])
|
||||
assert ws.shape == (len(var_index_pairs), 2)
|
||||
for i in range(len(var_index_pairs)):
|
||||
var, index = var_index_pairs[i]
|
||||
if self.mode == "heuristic":
|
||||
if ws[i,0] == 1:
|
||||
var[index].fix(0)
|
||||
elif ws[i,1] == 1:
|
||||
var[index].fix(1)
|
||||
else:
|
||||
if ws[i,0] == 1:
|
||||
var[index].value = 0
|
||||
elif ws[i,1] == 1:
|
||||
var[index].value = 1
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
var_split = self.transformer.split_variables(instance, model)
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
y = self.transformer.transform_solution(var_index_pairs)
|
||||
if category not in self.y_train.keys():
|
||||
self.y_train[category] = y
|
||||
else:
|
||||
self.y_train[category] = np.vstack([self.y_train[category], y])
|
||||
|
||||
def fit(self, solver):
|
||||
for category in self.x_train.keys():
|
||||
x_train = self.x_train[category]
|
||||
y_train = self.y_train[category]
|
||||
self.predictors[category] = deepcopy(self.predictor_prototype)
|
||||
self.predictors[category].fit(x_train, y_train)
|
||||
|
||||
def merge(self, other):
|
||||
for c in other.x_train.keys():
|
||||
if c not in self.x_train:
|
||||
self.x_train[c] = other.x_train[c]
|
||||
self.y_train[c] = other.y_train[c]
|
||||
else:
|
||||
self.x_train[c] = np.vstack([self.x_train[c], other.x_train[c]])
|
||||
self.y_train[c] = np.vstack([self.y_train[c], other.y_train[c]])
|
||||
if (c in other.predictors.keys()) and (c not in self.predictors.keys()):
|
||||
self.predictors[c] = other.predictors[c]
|
||||
Reference in New Issue
Block a user