Modularize LearningSolver into components; implement branch-priority

This commit is contained in:
2020-01-28 13:35:51 -06:00
parent 897743fce7
commit 6a29411df3
11 changed files with 348 additions and 141 deletions

View File

@@ -2,7 +2,11 @@
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from abc import ABC, abstractmethod
from copy import deepcopy
import numpy as np
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
@@ -10,6 +14,7 @@ from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
class WarmStartPredictor(ABC):
def __init__(self, thr_clip=[0.50, 0.50]):
self.models = [None, None]
@@ -105,4 +110,79 @@ class KnnWarmStartPredictor(WarmStartPredictor):
knn = KNeighborsClassifier(n_neighbors=self.k)
knn.fit(x_train, y_train)
return knn
return knn
class WarmStartComponent(Component):
def __init__(self,
predictor_prototype=LogisticWarmStartPredictor(),
mode="exact",
):
self.mode = mode
self.transformer = PerVariableTransformer()
self.x_train = {}
self.y_train = {}
self.predictors = {}
self.predictor_prototype = predictor_prototype
def before_solve(self, solver, instance, model):
var_split = self.transformer.split_variables(instance, model)
x_test = {}
# Collect training data (x_train) and build x_test
for category in var_split.keys():
var_index_pairs = var_split[category]
x = self.transformer.transform_instance(instance, var_index_pairs)
x_test[category] = x
if category not in self.x_train.keys():
self.x_train[category] = x
else:
assert x.shape[1] == self.x_train[category].shape[1]
self.x_train[category] = np.vstack([self.x_train[category], x])
# Predict solutions
for category in var_split.keys():
var_index_pairs = var_split[category]
if category in self.predictors.keys():
ws = self.predictors[category].predict(x_test[category])
assert ws.shape == (len(var_index_pairs), 2)
for i in range(len(var_index_pairs)):
var, index = var_index_pairs[i]
if self.mode == "heuristic":
if ws[i,0] == 1:
var[index].fix(0)
elif ws[i,1] == 1:
var[index].fix(1)
else:
if ws[i,0] == 1:
var[index].value = 0
elif ws[i,1] == 1:
var[index].value = 1
def after_solve(self, solver, instance, model):
var_split = self.transformer.split_variables(instance, model)
for category in var_split.keys():
var_index_pairs = var_split[category]
y = self.transformer.transform_solution(var_index_pairs)
if category not in self.y_train.keys():
self.y_train[category] = y
else:
self.y_train[category] = np.vstack([self.y_train[category], y])
def fit(self, solver):
for category in self.x_train.keys():
x_train = self.x_train[category]
y_train = self.y_train[category]
self.predictors[category] = deepcopy(self.predictor_prototype)
self.predictors[category].fit(x_train, y_train)
def merge(self, other):
for c in other.x_train.keys():
if c not in self.x_train:
self.x_train[c] = other.x_train[c]
self.y_train[c] = other.y_train[c]
else:
self.x_train[c] = np.vstack([self.x_train[c], other.x_train[c]])
self.y_train[c] = np.vstack([self.y_train[c], other.y_train[c]])
if (c in other.predictors.keys()) and (c not in self.predictors.keys()):
self.predictors[c] = other.predictors[c]