mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Merge branch 'master' of github.com:iSoron/miplearn
This commit is contained in:
@@ -7,6 +7,7 @@ from copy import deepcopy
|
|||||||
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from sklearn.metrics import roc_curve
|
from sklearn.metrics import roc_curve
|
||||||
|
from p_tqdm import p_map
|
||||||
|
|
||||||
from .component import Component
|
from .component import Component
|
||||||
from ..extractors import *
|
from ..extractors import *
|
||||||
@@ -45,40 +46,35 @@ class PrimalSolutionComponent(Component):
|
|||||||
def after_solve(self, solver, instance, model, results):
|
def after_solve(self, solver, instance, model, results):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def fit(self, training_instances):
|
def fit(self, training_instances, n_jobs=1):
|
||||||
logger.debug("Extracting features...")
|
logger.debug("Extracting features...")
|
||||||
features = VariableFeaturesExtractor().extract(training_instances)
|
features = VariableFeaturesExtractor().extract(training_instances)
|
||||||
solutions = SolutionExtractor().extract(training_instances)
|
solutions = SolutionExtractor().extract(training_instances)
|
||||||
|
|
||||||
for category in tqdm(features.keys(), desc="Fit (primal)"):
|
def _fit(args):
|
||||||
|
category, label = args[0], args[1]
|
||||||
x_train = features[category]
|
x_train = features[category]
|
||||||
y_train = solutions[category]
|
y_train = solutions[category]
|
||||||
for label in [0, 1]:
|
|
||||||
y = y_train[:, label].astype(int)
|
y = y_train[:, label].astype(int)
|
||||||
|
|
||||||
logger.debug("Fitting predictors[%s, %s]:" % (category, label))
|
|
||||||
if isinstance(self.classifier_prototype, list):
|
if isinstance(self.classifier_prototype, list):
|
||||||
pred = deepcopy(self.classifier_prototype[label])
|
clf = deepcopy(self.classifier_prototype[label])
|
||||||
else:
|
else:
|
||||||
pred = deepcopy(self.classifier_prototype)
|
clf = deepcopy(self.classifier_prototype)
|
||||||
pred.fit(x_train, y)
|
clf.fit(x_train, y)
|
||||||
self.classifiers[category, label] = pred
|
|
||||||
|
|
||||||
# If y is either always one or always zero, set fixed threshold
|
|
||||||
y_avg = np.average(y)
|
y_avg = np.average(y)
|
||||||
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
||||||
self.thresholds[category, label] = self.min_threshold[label]
|
return {"classifier": clf,
|
||||||
logger.debug(" Setting threshold to %.4f" % self.min_threshold[label])
|
"threshold": self.min_threshold[label]}
|
||||||
continue
|
|
||||||
|
|
||||||
proba = pred.predict_proba(x_train)
|
proba = clf.predict_proba(x_train)
|
||||||
assert isinstance(proba, np.ndarray), \
|
assert isinstance(proba, np.ndarray), \
|
||||||
"classifier should return numpy array"
|
"classifier should return numpy array"
|
||||||
assert proba.shape == (x_train.shape[0], 2), \
|
assert proba.shape == (x_train.shape[0], 2), \
|
||||||
"classifier should return (%d,%d)-shaped array, not %s" % (
|
"classifier should return (%d,%d)-shaped array, not %s" % (
|
||||||
x_train.shape[0], 2, str(proba.shape))
|
x_train.shape[0], 2, str(proba.shape))
|
||||||
|
|
||||||
# Calculate threshold dynamically using ROC curve
|
|
||||||
y_scores = proba[:, 1]
|
y_scores = proba[:, 1]
|
||||||
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
||||||
k = 0
|
k = 0
|
||||||
@@ -90,10 +86,24 @@ class PrimalSolutionComponent(Component):
|
|||||||
if thresholds[k + 1] < self.min_threshold[label]:
|
if thresholds[k + 1] < self.min_threshold[label]:
|
||||||
break
|
break
|
||||||
k = k + 1
|
k = k + 1
|
||||||
logger.debug(" Setting threshold to %.4f (fpr=%.4f, tpr=%.4f)" %
|
|
||||||
(thresholds[k], fpr[k], tpr[k]))
|
|
||||||
self.thresholds[category, label] = thresholds[k]
|
self.thresholds[category, label] = thresholds[k]
|
||||||
|
|
||||||
|
return {"classifier": clf,
|
||||||
|
"threshold": thresholds[k]}
|
||||||
|
|
||||||
|
items = [(category, label)
|
||||||
|
for category in features.keys()
|
||||||
|
for label in [0, 1]]
|
||||||
|
|
||||||
|
if n_jobs == 1:
|
||||||
|
results = list(map(_fit, tqdm(items, desc="Fit (primal)")))
|
||||||
|
else:
|
||||||
|
results = p_map(_fit, items, num_cpus=n_jobs)
|
||||||
|
|
||||||
|
for (idx, (category, label)) in enumerate(items):
|
||||||
|
self.thresholds[category, label] = results[idx]["threshold"]
|
||||||
|
self.classifiers[category, label] = results[idx]["classifier"]
|
||||||
|
|
||||||
def predict(self, instance):
|
def predict(self, instance):
|
||||||
x_test = VariableFeaturesExtractor().extract([instance])
|
x_test = VariableFeaturesExtractor().extract([instance])
|
||||||
solution = {}
|
solution = {}
|
||||||
|
|||||||
@@ -90,3 +90,11 @@ def test_evaluate():
|
|||||||
'True negative (%)': 50.0,
|
'True negative (%)': 50.0,
|
||||||
'True positive': 1,
|
'True positive': 1,
|
||||||
'True positive (%)': 25.0}}}
|
'True positive (%)': 25.0}}}
|
||||||
|
|
||||||
|
|
||||||
|
def test_primal_parallel_fit():
|
||||||
|
instances, models = get_training_instances_and_models()
|
||||||
|
comp = PrimalSolutionComponent()
|
||||||
|
comp.fit(instances, n_jobs=2)
|
||||||
|
assert len(comp.classifiers) == 2
|
||||||
|
assert len(comp.thresholds) == 2
|
||||||
|
|||||||
Reference in New Issue
Block a user