mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Sort methods
This commit is contained in:
@@ -81,6 +81,191 @@ class GurobiSolver(InternalSolver):
|
||||
self.gp.GRB.Callback.MIPNODE,
|
||||
]
|
||||
|
||||
@overrides
|
||||
def add_constraint(self, constr: Constraint, name: str) -> None:
|
||||
assert self.model is not None
|
||||
lhs = self.gp.quicksum(
|
||||
self._varname_to_var[varname] * coeff
|
||||
for (varname, coeff) in constr.lhs.items()
|
||||
)
|
||||
if constr.sense == "=":
|
||||
self.model.addConstr(lhs == constr.rhs, name=name)
|
||||
elif constr.sense == "<":
|
||||
self.model.addConstr(lhs <= constr.rhs, name=name)
|
||||
else:
|
||||
self.model.addConstr(lhs >= constr.rhs, name=name)
|
||||
self._dirty = True
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
return True
|
||||
|
||||
@overrides
|
||||
def build_test_instance_infeasible(self) -> Instance:
|
||||
return GurobiTestInstanceInfeasible()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_knapsack(self) -> Instance:
|
||||
return GurobiTestInstanceKnapsack(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def build_test_instance_redundancy(self) -> Instance:
|
||||
return GurobiTestInstanceRedundancy()
|
||||
|
||||
@overrides
|
||||
def clone(self) -> "GurobiSolver":
|
||||
return GurobiSolver(
|
||||
params=self.params,
|
||||
lazy_cb_frequency=self.lazy_cb_frequency,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def fix(self, solution: Solution) -> None:
|
||||
self._raise_if_callback()
|
||||
for (varname, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[varname]
|
||||
var.vtype = self.gp.GRB.CONTINUOUS
|
||||
var.lb = value
|
||||
var.ub = value
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
assert self.model is not None
|
||||
c = self.model.getConstrByName(cid)
|
||||
if self.is_infeasible():
|
||||
return c.farkasDual
|
||||
else:
|
||||
return c.pi
|
||||
|
||||
@overrides
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
return [
|
||||
"basis_status",
|
||||
"category",
|
||||
"dual_value",
|
||||
"lazy",
|
||||
"lhs",
|
||||
"rhs",
|
||||
"sa_rhs_down",
|
||||
"sa_rhs_up",
|
||||
"sense",
|
||||
"slack",
|
||||
"user_features",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
self._raise_if_callback()
|
||||
if self._dirty:
|
||||
self.model.update()
|
||||
self._dirty = False
|
||||
constraints: Dict[str, Constraint] = {}
|
||||
for c in self.model.getConstrs():
|
||||
constr = self._parse_gurobi_constraint(c)
|
||||
assert c.constrName not in constraints
|
||||
constraints[c.constrName] = constr
|
||||
return constraints
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
assert self.model is not None
|
||||
if self.model.modelSense == 1:
|
||||
return "min"
|
||||
else:
|
||||
return "max"
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
assert self.model is not None
|
||||
if self.cb_where is not None:
|
||||
if self.cb_where == self.gp.GRB.Callback.MIPNODE:
|
||||
return {
|
||||
v.varName: self.model.cbGetNodeRel(v) for v in self.model.getVars()
|
||||
}
|
||||
elif self.cb_where == self.gp.GRB.Callback.MIPSOL:
|
||||
return {
|
||||
v.varName: self.model.cbGetSolution(v) for v in self.model.getVars()
|
||||
}
|
||||
else:
|
||||
raise Exception(
|
||||
f"get_solution can only be called from a callback "
|
||||
f"when cb_where is either MIPNODE or MIPSOL"
|
||||
)
|
||||
if self.model.solCount == 0:
|
||||
return None
|
||||
return {v.varName: v.x for v in self.model.getVars()}
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
"basis_status",
|
||||
"category",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"type",
|
||||
"upper_bound",
|
||||
"user_features",
|
||||
"value",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
self._raise_if_callback()
|
||||
assert self.model is not None
|
||||
return [v.varName for v in self.model.getVars()]
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for gp_var in self.model.getVars():
|
||||
name = gp_var.varName
|
||||
assert len(name) > 0, f"empty variable name detected"
|
||||
assert name not in variables, f"duplicated variable name detected: {name}"
|
||||
var = self._parse_gurobi_var(gp_var)
|
||||
variables[name] = var
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def is_constraint_satisfied(self, constr: Constraint, tol: float = 1e-6) -> bool:
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += self._get_value(var) * coeff
|
||||
if constr.sense == "<":
|
||||
return lhs <= constr.rhs + tol
|
||||
elif constr.sense == ">":
|
||||
return lhs >= constr.rhs - tol
|
||||
else:
|
||||
return abs(constr.rhs - lhs) < abs(tol)
|
||||
|
||||
@overrides
|
||||
def is_infeasible(self) -> bool:
|
||||
assert self.model is not None
|
||||
return self.model.status in [self.gp.GRB.INFEASIBLE, self.gp.GRB.INF_OR_UNBD]
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
assert self.model is not None
|
||||
constr = self.model.getConstrByName(name)
|
||||
self.model.remove(constr)
|
||||
|
||||
@overrides
|
||||
def set_instance(
|
||||
self,
|
||||
@@ -96,66 +281,14 @@ class GurobiSolver(InternalSolver):
|
||||
self.model.update()
|
||||
self._update_vars()
|
||||
|
||||
def _raise_if_callback(self) -> None:
|
||||
if self.cb_where is not None:
|
||||
raise Exception("method cannot be called from a callback")
|
||||
|
||||
def _update_vars(self) -> None:
|
||||
assert self.model is not None
|
||||
self._varname_to_var.clear()
|
||||
self._original_vtype = {}
|
||||
self._bin_vars.clear()
|
||||
for var in self.model.getVars():
|
||||
assert var.varName not in self._varname_to_var, (
|
||||
f"Duplicated variable name detected: {var.varName}. "
|
||||
f"Unique variable names are currently required."
|
||||
)
|
||||
self._varname_to_var[var.varName] = var
|
||||
assert var.vtype in ["B", "C"], (
|
||||
"Only binary and continuous variables are currently supported. "
|
||||
"Variable {var.varName} has type {var.vtype}."
|
||||
)
|
||||
self._original_vtype[var] = var.vtype
|
||||
if var.vtype == "B":
|
||||
self._bin_vars.append(var)
|
||||
|
||||
def _apply_params(self, streams: List[Any]) -> None:
|
||||
assert self.model is not None
|
||||
with _RedirectOutput(streams):
|
||||
for (name, value) in self.params.items():
|
||||
self.model.setParam(name, value)
|
||||
|
||||
@overrides
|
||||
def solve_lp(
|
||||
self,
|
||||
tee: bool = False,
|
||||
) -> LPSolveStats:
|
||||
def set_warm_start(self, solution: Solution) -> None:
|
||||
self._raise_if_callback()
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
assert self.model is not None
|
||||
for var in self._bin_vars:
|
||||
var.vtype = self.gp.GRB.CONTINUOUS
|
||||
var.lb = 0.0
|
||||
var.ub = 1.0
|
||||
with _RedirectOutput(streams):
|
||||
self.model.optimize()
|
||||
self._dirty = False
|
||||
for var in self._bin_vars:
|
||||
var.vtype = self.gp.GRB.BINARY
|
||||
log = streams[0].getvalue()
|
||||
self._has_lp_solution = self.model.solCount > 0
|
||||
self._has_mip_solution = False
|
||||
opt_value = None
|
||||
if not self.is_infeasible():
|
||||
opt_value = self.model.objVal
|
||||
return LPSolveStats(
|
||||
lp_value=opt_value,
|
||||
lp_log=log,
|
||||
lp_wallclock_time=self.model.runtime,
|
||||
)
|
||||
self._clear_warm_start()
|
||||
for (var_name, value) in solution.items():
|
||||
var = self._varname_to_var[var_name]
|
||||
if value is not None:
|
||||
var.start = value
|
||||
|
||||
@overrides
|
||||
def solve(
|
||||
@@ -235,62 +368,73 @@ class GurobiSolver(InternalSolver):
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
def solve_lp(
|
||||
self,
|
||||
tee: bool = False,
|
||||
) -> LPSolveStats:
|
||||
self._raise_if_callback()
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
assert self.model is not None
|
||||
if self.cb_where is not None:
|
||||
if self.cb_where == self.gp.GRB.Callback.MIPNODE:
|
||||
return {
|
||||
v.varName: self.model.cbGetNodeRel(v) for v in self.model.getVars()
|
||||
}
|
||||
elif self.cb_where == self.gp.GRB.Callback.MIPSOL:
|
||||
return {
|
||||
v.varName: self.model.cbGetSolution(v) for v in self.model.getVars()
|
||||
}
|
||||
else:
|
||||
raise Exception(
|
||||
f"get_solution can only be called from a callback "
|
||||
f"when cb_where is either MIPNODE or MIPSOL"
|
||||
)
|
||||
if self.model.solCount == 0:
|
||||
for var in self._bin_vars:
|
||||
var.vtype = self.gp.GRB.CONTINUOUS
|
||||
var.lb = 0.0
|
||||
var.ub = 1.0
|
||||
with _RedirectOutput(streams):
|
||||
self.model.optimize()
|
||||
self._dirty = False
|
||||
for var in self._bin_vars:
|
||||
var.vtype = self.gp.GRB.BINARY
|
||||
log = streams[0].getvalue()
|
||||
self._has_lp_solution = self.model.solCount > 0
|
||||
self._has_mip_solution = False
|
||||
opt_value = None
|
||||
if not self.is_infeasible():
|
||||
opt_value = self.model.objVal
|
||||
return LPSolveStats(
|
||||
lp_value=opt_value,
|
||||
lp_log=log,
|
||||
lp_wallclock_time=self.model.runtime,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def relax(self) -> None:
|
||||
assert self.model is not None
|
||||
self.model.update()
|
||||
self.model = self.model.relax()
|
||||
self._update_vars()
|
||||
|
||||
def _apply_params(self, streams: List[Any]) -> None:
|
||||
assert self.model is not None
|
||||
with _RedirectOutput(streams):
|
||||
for (name, value) in self.params.items():
|
||||
self.model.setParam(name, value)
|
||||
|
||||
def _clear_warm_start(self) -> None:
|
||||
for var in self._varname_to_var.values():
|
||||
var.start = self.gp.GRB.UNDEFINED
|
||||
|
||||
@staticmethod
|
||||
def _extract(
|
||||
log: str,
|
||||
regexp: str,
|
||||
default: Optional[str] = None,
|
||||
) -> Optional[str]:
|
||||
value = default
|
||||
for line in log.splitlines():
|
||||
matches = re.findall(regexp, line)
|
||||
if len(matches) == 0:
|
||||
continue
|
||||
value = matches[0]
|
||||
return value
|
||||
|
||||
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
||||
ws = self._extract(log, "MIP start with objective ([0-9.e+-]*)")
|
||||
if ws is None:
|
||||
return None
|
||||
return {v.varName: v.x for v in self.model.getVars()}
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
self._raise_if_callback()
|
||||
assert self.model is not None
|
||||
return [v.varName for v in self.model.getVars()]
|
||||
|
||||
@overrides
|
||||
def set_warm_start(self, solution: Solution) -> None:
|
||||
self._raise_if_callback()
|
||||
self._clear_warm_start()
|
||||
for (var_name, value) in solution.items():
|
||||
var = self._varname_to_var[var_name]
|
||||
if value is not None:
|
||||
var.start = value
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
assert self.model is not None
|
||||
if self.model.modelSense == 1:
|
||||
return "min"
|
||||
else:
|
||||
return "max"
|
||||
|
||||
@overrides
|
||||
def is_infeasible(self) -> bool:
|
||||
assert self.model is not None
|
||||
return self.model.status in [self.gp.GRB.INFEASIBLE, self.gp.GRB.INF_OR_UNBD]
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
assert self.model is not None
|
||||
c = self.model.getConstrByName(cid)
|
||||
if self.is_infeasible():
|
||||
return c.farkasDual
|
||||
else:
|
||||
return c.pi
|
||||
return float(ws)
|
||||
|
||||
def _get_value(self, var: Any) -> float:
|
||||
assert self.model is not None
|
||||
@@ -305,132 +449,6 @@ class GurobiSolver(InternalSolver):
|
||||
"get_value cannot be called from cb_where=%s" % self.cb_where
|
||||
)
|
||||
|
||||
@overrides
|
||||
def add_constraint(self, constr: Constraint, name: str) -> None:
|
||||
assert self.model is not None
|
||||
lhs = self.gp.quicksum(
|
||||
self._varname_to_var[varname] * coeff
|
||||
for (varname, coeff) in constr.lhs.items()
|
||||
)
|
||||
if constr.sense == "=":
|
||||
self.model.addConstr(lhs == constr.rhs, name=name)
|
||||
elif constr.sense == "<":
|
||||
self.model.addConstr(lhs <= constr.rhs, name=name)
|
||||
else:
|
||||
self.model.addConstr(lhs >= constr.rhs, name=name)
|
||||
self._dirty = True
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
assert self.model is not None
|
||||
constr = self.model.getConstrByName(name)
|
||||
self.model.remove(constr)
|
||||
|
||||
@overrides
|
||||
def is_constraint_satisfied(self, constr: Constraint, tol: float = 1e-6) -> bool:
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += self._get_value(var) * coeff
|
||||
if constr.sense == "<":
|
||||
return lhs <= constr.rhs + tol
|
||||
elif constr.sense == ">":
|
||||
return lhs >= constr.rhs - tol
|
||||
else:
|
||||
return abs(constr.rhs - lhs) < abs(tol)
|
||||
|
||||
def _clear_warm_start(self) -> None:
|
||||
for var in self._varname_to_var.values():
|
||||
var.start = self.gp.GRB.UNDEFINED
|
||||
|
||||
@overrides
|
||||
def fix(self, solution: Solution) -> None:
|
||||
self._raise_if_callback()
|
||||
for (varname, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[varname]
|
||||
var.vtype = self.gp.GRB.CONTINUOUS
|
||||
var.lb = value
|
||||
var.ub = value
|
||||
|
||||
@overrides
|
||||
def relax(self) -> None:
|
||||
assert self.model is not None
|
||||
self.model.update()
|
||||
self.model = self.model.relax()
|
||||
self._update_vars()
|
||||
|
||||
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
||||
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
||||
if ws is None:
|
||||
return None
|
||||
return float(ws)
|
||||
|
||||
@staticmethod
|
||||
def __extract(
|
||||
log: str,
|
||||
regexp: str,
|
||||
default: Optional[str] = None,
|
||||
) -> Optional[str]:
|
||||
value = default
|
||||
for line in log.splitlines():
|
||||
matches = re.findall(regexp, line)
|
||||
if len(matches) == 0:
|
||||
continue
|
||||
value = matches[0]
|
||||
return value
|
||||
|
||||
def __getstate__(self) -> Dict:
|
||||
return {
|
||||
"params": self.params,
|
||||
"lazy_cb_where": self.lazy_cb_where,
|
||||
}
|
||||
|
||||
def __setstate__(self, state: Dict) -> None:
|
||||
self.params = state["params"]
|
||||
self.lazy_cb_where = state["lazy_cb_where"]
|
||||
self.instance = None
|
||||
self.model = None
|
||||
self.cb_where = None
|
||||
|
||||
@overrides
|
||||
def clone(self) -> "GurobiSolver":
|
||||
return GurobiSolver(
|
||||
params=self.params,
|
||||
lazy_cb_frequency=self.lazy_cb_frequency,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def build_test_instance_infeasible(self) -> Instance:
|
||||
return GurobiTestInstanceInfeasible()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_redundancy(self) -> Instance:
|
||||
return GurobiTestInstanceRedundancy()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_knapsack(self) -> Instance:
|
||||
return GurobiTestInstanceKnapsack(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for gp_var in self.model.getVars():
|
||||
name = gp_var.varName
|
||||
assert len(name) > 0, f"empty variable name detected"
|
||||
assert name not in variables, f"duplicated variable name detected: {name}"
|
||||
var = self._parse_gurobi_var(gp_var)
|
||||
variables[name] = var
|
||||
return variables
|
||||
|
||||
def _parse_gurobi_var(self, gp_var: Any) -> Variable:
|
||||
assert self.model is not None
|
||||
var = Variable()
|
||||
@@ -462,20 +480,6 @@ class GurobiSolver(InternalSolver):
|
||||
var.value = gp_var.x
|
||||
return var
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
self._raise_if_callback()
|
||||
if self._dirty:
|
||||
self.model.update()
|
||||
self._dirty = False
|
||||
constraints: Dict[str, Constraint] = {}
|
||||
for c in self.model.getConstrs():
|
||||
constr = self._parse_gurobi_constraint(c)
|
||||
assert c.constrName not in constraints
|
||||
constraints[c.constrName] = constr
|
||||
return constraints
|
||||
|
||||
def _parse_gurobi_constraint(self, gp_constr: Any) -> Constraint:
|
||||
assert self.model is not None
|
||||
expr = self.model.getRow(gp_constr)
|
||||
@@ -501,45 +505,41 @@ class GurobiSolver(InternalSolver):
|
||||
constr.slack = gp_constr.slack
|
||||
return constr
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
return True
|
||||
def _raise_if_callback(self) -> None:
|
||||
if self.cb_where is not None:
|
||||
raise Exception("method cannot be called from a callback")
|
||||
|
||||
@overrides
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
return [
|
||||
"basis_status",
|
||||
"category",
|
||||
"dual_value",
|
||||
"lazy",
|
||||
"lhs",
|
||||
"rhs",
|
||||
"sa_rhs_down",
|
||||
"sa_rhs_up",
|
||||
"sense",
|
||||
"slack",
|
||||
"user_features",
|
||||
]
|
||||
def _update_vars(self) -> None:
|
||||
assert self.model is not None
|
||||
self._varname_to_var.clear()
|
||||
self._original_vtype = {}
|
||||
self._bin_vars.clear()
|
||||
for var in self.model.getVars():
|
||||
assert var.varName not in self._varname_to_var, (
|
||||
f"Duplicated variable name detected: {var.varName}. "
|
||||
f"Unique variable names are currently required."
|
||||
)
|
||||
self._varname_to_var[var.varName] = var
|
||||
assert var.vtype in ["B", "C"], (
|
||||
"Only binary and continuous variables are currently supported. "
|
||||
"Variable {var.varName} has type {var.vtype}."
|
||||
)
|
||||
self._original_vtype[var] = var.vtype
|
||||
if var.vtype == "B":
|
||||
self._bin_vars.append(var)
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
"basis_status",
|
||||
"category",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"type",
|
||||
"upper_bound",
|
||||
"user_features",
|
||||
"value",
|
||||
]
|
||||
def __getstate__(self) -> Dict:
|
||||
return {
|
||||
"params": self.params,
|
||||
"lazy_cb_where": self.lazy_cb_where,
|
||||
}
|
||||
|
||||
def __setstate__(self, state: Dict) -> None:
|
||||
self.params = state["params"]
|
||||
self.lazy_cb_where = state["lazy_cb_where"]
|
||||
self.instance = None
|
||||
self.model = None
|
||||
self.cb_where = None
|
||||
|
||||
|
||||
class GurobiTestInstanceInfeasible(Instance):
|
||||
|
||||
@@ -70,35 +70,212 @@ class BasePyomoSolver(InternalSolver):
|
||||
self._pyomo_solver.options[key] = value
|
||||
|
||||
@overrides
|
||||
def solve_lp(
|
||||
def add_constraint(
|
||||
self,
|
||||
tee: bool = False,
|
||||
) -> LPSolveStats:
|
||||
self.relax()
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
with _RedirectOutput(streams):
|
||||
results = self._pyomo_solver.solve(tee=True)
|
||||
self._termination_condition = results["Solver"][0]["Termination condition"]
|
||||
self._restore_integrality()
|
||||
opt_value = None
|
||||
constr: Any,
|
||||
name: str,
|
||||
) -> None:
|
||||
assert self.model is not None
|
||||
if isinstance(constr, Constraint):
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += var * coeff
|
||||
if constr.sense == "=":
|
||||
expr = lhs == constr.rhs
|
||||
elif constr.sense == "<":
|
||||
expr = lhs <= constr.rhs
|
||||
else:
|
||||
expr = lhs >= constr.rhs
|
||||
cl = pe.Constraint(expr=expr, name=name)
|
||||
self.model.add_component(name, cl)
|
||||
self._pyomo_solver.add_constraint(cl)
|
||||
self._cname_to_constr[name] = cl
|
||||
else:
|
||||
self._pyomo_solver.add_constraint(constr)
|
||||
self._termination_condition = ""
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
if not self.is_infeasible():
|
||||
opt_value = results["Problem"][0]["Lower bound"]
|
||||
self._has_lp_solution = True
|
||||
return LPSolveStats(
|
||||
lp_value=opt_value,
|
||||
lp_log=streams[0].getvalue(),
|
||||
lp_wallclock_time=results["Solver"][0]["Wallclock time"],
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
return False
|
||||
|
||||
@overrides
|
||||
def build_test_instance_infeasible(self) -> Instance:
|
||||
return PyomoTestInstanceInfeasible()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_redundancy(self) -> Instance:
|
||||
return PyomoTestInstanceRedundancy()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_knapsack(self) -> Instance:
|
||||
return PyomoTestInstanceKnapsack(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
def _restore_integrality(self) -> None:
|
||||
for var in self._bin_vars:
|
||||
var.domain = pyomo.core.base.set_types.Binary
|
||||
@overrides
|
||||
def fix(self, solution: Solution) -> None:
|
||||
for (varname, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[varname]
|
||||
var.fix(value)
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
|
||||
constraints = {}
|
||||
for constr in self.model.component_objects(pyomo.core.Constraint):
|
||||
if isinstance(constr, pe.ConstraintList):
|
||||
for idx in constr:
|
||||
name = f"{constr.name}[{idx}]"
|
||||
assert name not in constraints
|
||||
constraints[name] = self._parse_pyomo_constraint(constr[idx])
|
||||
else:
|
||||
name = constr.name
|
||||
assert name not in constraints
|
||||
constraints[name] = self._parse_pyomo_constraint(constr)
|
||||
|
||||
return constraints
|
||||
|
||||
@overrides
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
return [
|
||||
"dual_value",
|
||||
"lazy",
|
||||
"lhs",
|
||||
"rhs",
|
||||
"sense",
|
||||
"slack",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
constr = self._cname_to_constr[cid]
|
||||
return self._pyomo_solver.dual[constr]
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
assert self.model is not None
|
||||
if self.is_infeasible():
|
||||
return None
|
||||
solution: Solution = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
solution[f"{var}[{index}]"] = var[index].value
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
assert self.model is not None
|
||||
variables: List[VariableName] = []
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
variables += [f"{var}[{index}]"]
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
return self._obj_sense
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for var in self.model.component_objects(pyomo.core.Var):
|
||||
for idx in var:
|
||||
varname = f"{var}[{idx}]"
|
||||
if idx is None:
|
||||
varname = str(var)
|
||||
variables[varname] = self._parse_pyomo_variable(var[idx])
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
# "basis_status",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
# "sa_lb_down",
|
||||
# "sa_lb_up",
|
||||
# "sa_obj_down",
|
||||
# "sa_obj_up",
|
||||
# "sa_ub_down",
|
||||
# "sa_ub_up",
|
||||
"type",
|
||||
"upper_bound",
|
||||
"value",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def is_constraint_satisfied(self, constr: Constraint, tol: float = 1e-6) -> bool:
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += var.value * coeff
|
||||
if constr.sense == "<":
|
||||
return lhs <= constr.rhs + tol
|
||||
elif constr.sense == ">":
|
||||
return lhs >= constr.rhs - tol
|
||||
else:
|
||||
return abs(constr.rhs - lhs) < abs(tol)
|
||||
|
||||
@overrides
|
||||
def is_infeasible(self) -> bool:
|
||||
return self._termination_condition == TerminationCondition.infeasible
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
assert self.model is not None
|
||||
constr = self._cname_to_constr[name]
|
||||
del self._cname_to_constr[name]
|
||||
self.model.del_component(constr)
|
||||
self._pyomo_solver.remove_constraint(constr)
|
||||
|
||||
@overrides
|
||||
def set_instance(
|
||||
self,
|
||||
instance: Instance,
|
||||
model: Any = None,
|
||||
) -> None:
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
assert isinstance(model, pe.ConcreteModel)
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self.model.extra_constraints = ConstraintList()
|
||||
self.model.dual = Suffix(direction=Suffix.IMPORT)
|
||||
self.model.rc = Suffix(direction=Suffix.IMPORT)
|
||||
self.model.slack = Suffix(direction=Suffix.IMPORT)
|
||||
self._pyomo_solver.set_instance(model)
|
||||
self._update_obj()
|
||||
self._update_vars()
|
||||
self._update_constrs()
|
||||
|
||||
@overrides
|
||||
def set_warm_start(self, solution: Solution) -> None:
|
||||
self._clear_warm_start()
|
||||
count_fixed = 0
|
||||
for (var_name, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[var_name]
|
||||
var.value = solution[var_name]
|
||||
count_fixed += 1
|
||||
if count_fixed > 0:
|
||||
self._is_warm_start_available = True
|
||||
|
||||
@overrides
|
||||
def solve(
|
||||
self,
|
||||
@@ -148,61 +325,38 @@ class BasePyomoSolver(InternalSolver):
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
assert self.model is not None
|
||||
if self.is_infeasible():
|
||||
return None
|
||||
solution: Solution = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
solution[f"{var}[{index}]"] = var[index].value
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
assert self.model is not None
|
||||
variables: List[VariableName] = []
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
variables += [f"{var}[{index}]"]
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def set_warm_start(self, solution: Solution) -> None:
|
||||
self._clear_warm_start()
|
||||
count_fixed = 0
|
||||
for (var_name, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[var_name]
|
||||
var.value = solution[var_name]
|
||||
count_fixed += 1
|
||||
if count_fixed > 0:
|
||||
self._is_warm_start_available = True
|
||||
|
||||
@overrides
|
||||
def set_instance(
|
||||
def solve_lp(
|
||||
self,
|
||||
instance: Instance,
|
||||
model: Any = None,
|
||||
) -> None:
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
assert isinstance(model, pe.ConcreteModel)
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self.model.extra_constraints = ConstraintList()
|
||||
self.model.dual = Suffix(direction=Suffix.IMPORT)
|
||||
self.model.rc = Suffix(direction=Suffix.IMPORT)
|
||||
self.model.slack = Suffix(direction=Suffix.IMPORT)
|
||||
self._pyomo_solver.set_instance(model)
|
||||
self._update_obj()
|
||||
self._update_vars()
|
||||
self._update_constrs()
|
||||
tee: bool = False,
|
||||
) -> LPSolveStats:
|
||||
self.relax()
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
with _RedirectOutput(streams):
|
||||
results = self._pyomo_solver.solve(tee=True)
|
||||
self._termination_condition = results["Solver"][0]["Termination condition"]
|
||||
self._restore_integrality()
|
||||
opt_value = None
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
if not self.is_infeasible():
|
||||
opt_value = results["Problem"][0]["Lower bound"]
|
||||
self._has_lp_solution = True
|
||||
return LPSolveStats(
|
||||
lp_value=opt_value,
|
||||
lp_log=streams[0].getvalue(),
|
||||
lp_wallclock_time=results["Solver"][0]["Wallclock time"],
|
||||
)
|
||||
|
||||
@overrides
|
||||
def relax(self) -> None:
|
||||
for var in self._bin_vars:
|
||||
lb, ub = var.bounds
|
||||
var.setlb(lb)
|
||||
var.setub(ub)
|
||||
var.domain = pyomo.core.base.set_types.Reals
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
def _clear_warm_start(self) -> None:
|
||||
for var in self._all_vars:
|
||||
@@ -210,96 +364,8 @@ class BasePyomoSolver(InternalSolver):
|
||||
var.value = None
|
||||
self._is_warm_start_available = False
|
||||
|
||||
def _update_obj(self) -> None:
|
||||
self._obj_sense = "max"
|
||||
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
||||
self._obj_sense = "min"
|
||||
|
||||
def _update_vars(self) -> None:
|
||||
assert self.model is not None
|
||||
self._all_vars = []
|
||||
self._bin_vars = []
|
||||
self._varname_to_var = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
for idx in var:
|
||||
self._varname_to_var[f"{var.name}[{idx}]"] = var[idx]
|
||||
self._all_vars += [var[idx]]
|
||||
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
||||
self._bin_vars += [var[idx]]
|
||||
for obj in self.model.component_objects(Objective):
|
||||
self._obj = self._parse_pyomo_expr(obj.expr)
|
||||
break
|
||||
|
||||
def _update_constrs(self) -> None:
|
||||
assert self.model is not None
|
||||
self._cname_to_constr.clear()
|
||||
for constr in self.model.component_objects(pyomo.core.Constraint):
|
||||
if isinstance(constr, pe.ConstraintList):
|
||||
for idx in constr:
|
||||
self._cname_to_constr[f"{constr.name}[{idx}]"] = constr[idx]
|
||||
else:
|
||||
self._cname_to_constr[constr.name] = constr
|
||||
|
||||
@overrides
|
||||
def fix(self, solution: Solution) -> None:
|
||||
for (varname, value) in solution.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._varname_to_var[varname]
|
||||
var.fix(value)
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
@overrides
|
||||
def add_constraint(
|
||||
self,
|
||||
constr: Any,
|
||||
name: str,
|
||||
) -> None:
|
||||
assert self.model is not None
|
||||
if isinstance(constr, Constraint):
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += var * coeff
|
||||
if constr.sense == "=":
|
||||
expr = lhs == constr.rhs
|
||||
elif constr.sense == "<":
|
||||
expr = lhs <= constr.rhs
|
||||
else:
|
||||
expr = lhs >= constr.rhs
|
||||
cl = pe.Constraint(expr=expr, name=name)
|
||||
self.model.add_component(name, cl)
|
||||
self._pyomo_solver.add_constraint(cl)
|
||||
self._cname_to_constr[name] = cl
|
||||
else:
|
||||
self._pyomo_solver.add_constraint(constr)
|
||||
self._termination_condition = ""
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
assert self.model is not None
|
||||
constr = self._cname_to_constr[name]
|
||||
del self._cname_to_constr[name]
|
||||
self.model.del_component(constr)
|
||||
self._pyomo_solver.remove_constraint(constr)
|
||||
|
||||
@overrides
|
||||
def is_constraint_satisfied(self, constr: Constraint, tol: float = 1e-6) -> bool:
|
||||
lhs = 0.0
|
||||
for (varname, coeff) in constr.lhs.items():
|
||||
var = self._varname_to_var[varname]
|
||||
lhs += var.value * coeff
|
||||
if constr.sense == "<":
|
||||
return lhs <= constr.rhs + tol
|
||||
elif constr.sense == ">":
|
||||
return lhs >= constr.rhs - tol
|
||||
else:
|
||||
return abs(constr.rhs - lhs) < abs(tol)
|
||||
|
||||
@staticmethod
|
||||
def __extract(
|
||||
def _extract(
|
||||
log: str,
|
||||
regexp: Optional[str],
|
||||
default: Optional[str] = None,
|
||||
@@ -314,73 +380,23 @@ class BasePyomoSolver(InternalSolver):
|
||||
value = matches[0]
|
||||
return value
|
||||
|
||||
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
||||
value = self.__extract(log, self._get_warm_start_regexp())
|
||||
if value is None:
|
||||
return None
|
||||
return float(value)
|
||||
|
||||
def _extract_node_count(self, log: str) -> Optional[int]:
|
||||
value = self.__extract(log, self._get_node_count_regexp())
|
||||
value = self._extract(log, self._get_node_count_regexp())
|
||||
if value is None:
|
||||
return None
|
||||
return int(value)
|
||||
|
||||
def _get_warm_start_regexp(self) -> Optional[str]:
|
||||
return None
|
||||
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
||||
value = self._extract(log, self._get_warm_start_regexp())
|
||||
if value is None:
|
||||
return None
|
||||
return float(value)
|
||||
|
||||
def _get_node_count_regexp(self) -> Optional[str]:
|
||||
return None
|
||||
|
||||
@overrides
|
||||
def relax(self) -> None:
|
||||
for var in self._bin_vars:
|
||||
lb, ub = var.bounds
|
||||
var.setlb(lb)
|
||||
var.setub(ub)
|
||||
var.domain = pyomo.core.base.set_types.Reals
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
@overrides
|
||||
def is_infeasible(self) -> bool:
|
||||
return self._termination_condition == TerminationCondition.infeasible
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
constr = self._cname_to_constr[cid]
|
||||
return self._pyomo_solver.dual[constr]
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
return self._obj_sense
|
||||
|
||||
@overrides
|
||||
def build_test_instance_infeasible(self) -> Instance:
|
||||
return PyomoTestInstanceInfeasible()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_redundancy(self) -> Instance:
|
||||
return PyomoTestInstanceRedundancy()
|
||||
|
||||
@overrides
|
||||
def build_test_instance_knapsack(self) -> Instance:
|
||||
return PyomoTestInstanceKnapsack(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for var in self.model.component_objects(pyomo.core.Var):
|
||||
for idx in var:
|
||||
varname = f"{var}[{idx}]"
|
||||
if idx is None:
|
||||
varname = str(var)
|
||||
variables[varname] = self._parse_pyomo_variable(var[idx])
|
||||
return variables
|
||||
def _get_warm_start_regexp(self) -> Optional[str]:
|
||||
return None
|
||||
|
||||
def _parse_pyomo_variable(self, var: pyomo.core.Var) -> Variable:
|
||||
# Variable type
|
||||
@@ -420,24 +436,6 @@ class BasePyomoSolver(InternalSolver):
|
||||
reduced_cost=rc,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
|
||||
constraints = {}
|
||||
for constr in self.model.component_objects(pyomo.core.Constraint):
|
||||
if isinstance(constr, pe.ConstraintList):
|
||||
for idx in constr:
|
||||
name = f"{constr.name}[{idx}]"
|
||||
assert name not in constraints
|
||||
constraints[name] = self._parse_pyomo_constraint(constr[idx])
|
||||
else:
|
||||
name = constr.name
|
||||
assert name not in constraints
|
||||
constraints[name] = self._parse_pyomo_constraint(constr)
|
||||
|
||||
return constraints
|
||||
|
||||
def _parse_pyomo_constraint(
|
||||
self,
|
||||
pyomo_constr: pyomo.core.Constraint,
|
||||
@@ -490,38 +488,40 @@ class BasePyomoSolver(InternalSolver):
|
||||
raise Exception(f"Unknown expression type: {expr.__class__.__name__}")
|
||||
return lhs
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
return False
|
||||
def _restore_integrality(self) -> None:
|
||||
for var in self._bin_vars:
|
||||
var.domain = pyomo.core.base.set_types.Binary
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
@overrides
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
return [
|
||||
"dual_value",
|
||||
"lazy",
|
||||
"lhs",
|
||||
"rhs",
|
||||
"sense",
|
||||
"slack",
|
||||
]
|
||||
def _update_obj(self) -> None:
|
||||
self._obj_sense = "max"
|
||||
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
||||
self._obj_sense = "min"
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
# "basis_status",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
# "sa_lb_down",
|
||||
# "sa_lb_up",
|
||||
# "sa_obj_down",
|
||||
# "sa_obj_up",
|
||||
# "sa_ub_down",
|
||||
# "sa_ub_up",
|
||||
"type",
|
||||
"upper_bound",
|
||||
"value",
|
||||
]
|
||||
def _update_vars(self) -> None:
|
||||
assert self.model is not None
|
||||
self._all_vars = []
|
||||
self._bin_vars = []
|
||||
self._varname_to_var = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
for idx in var:
|
||||
self._varname_to_var[f"{var.name}[{idx}]"] = var[idx]
|
||||
self._all_vars += [var[idx]]
|
||||
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
||||
self._bin_vars += [var[idx]]
|
||||
for obj in self.model.component_objects(Objective):
|
||||
self._obj = self._parse_pyomo_expr(obj.expr)
|
||||
break
|
||||
|
||||
def _update_constrs(self) -> None:
|
||||
assert self.model is not None
|
||||
self._cname_to_constr.clear()
|
||||
for constr in self.model.component_objects(pyomo.core.Constraint):
|
||||
if isinstance(constr, pe.ConstraintList):
|
||||
for idx in constr:
|
||||
self._cname_to_constr[f"{constr.name}[{idx}]"] = constr[idx]
|
||||
else:
|
||||
self._cname_to_constr[constr.name] = constr
|
||||
|
||||
|
||||
class PyomoTestInstanceInfeasible(Instance):
|
||||
|
||||
Reference in New Issue
Block a user