StaticLazy: Refactor

This commit is contained in:
2021-04-04 08:39:56 -05:00
parent 168f56c296
commit 6e614264b5
8 changed files with 340 additions and 429 deletions

View File

@@ -151,8 +151,8 @@ class Component:
def fit_xy(
self,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
"""
Given two dictionaries x and y, mapping the name of the category to matrices

View File

@@ -4,7 +4,7 @@
import logging
import sys
from typing import Dict, Tuple, Optional
from typing import Dict, Tuple, Optional, List, Hashable, Any, TYPE_CHECKING, Set
import numpy as np
from tqdm.auto import tqdm
@@ -12,203 +12,163 @@ from tqdm.auto import tqdm
from miplearn import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components.component import Component
from miplearn.types import TrainingSample, Features
from miplearn.types import TrainingSample, Features, LearningSolveStats
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.solvers.learning import LearningSolver, Instance
class LazyConstraint:
def __init__(self, cid, obj):
def __init__(self, cid: str, obj: Any) -> None:
self.cid = cid
self.obj = obj
class StaticLazyConstraintsComponent(Component):
"""
Component that decides which of the constraints tagged as lazy should
be kept in the formulation, and which should be removed.
"""
def __init__(
self,
classifier=CountingClassifier(),
threshold=0.05,
use_two_phase_gap=True,
large_gap=1e-2,
violation_tolerance=-0.5,
):
classifier: Classifier = CountingClassifier(),
threshold: float = 0.05,
violation_tolerance: float = -0.5,
) -> None:
assert isinstance(classifier, Classifier)
self.threshold = threshold
self.classifier_prototype = classifier
self.classifiers = {}
self.pool = []
self.original_gap = None
self.large_gap = large_gap
self.is_gap_large = False
self.use_two_phase_gap = use_two_phase_gap
self.violation_tolerance = violation_tolerance
self.threshold: float = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Hashable, Classifier] = {}
self.pool: Dict[str, LazyConstraint] = {}
self.violation_tolerance: float = violation_tolerance
self.enforced_cids: Set[str] = set()
self.n_restored: int = 0
self.n_iterations: int = 0
def before_solve_mip(
self,
solver,
instance,
model,
stats,
features,
training_data,
):
self.pool = []
if not solver.use_lazy_cb and self.use_two_phase_gap:
logger.info("Increasing gap tolerance to %f", self.large_gap)
self.original_gap = solver.gap_tolerance
self.is_gap_large = True
solver.internal_solver.set_gap_tolerance(self.large_gap)
solver: "LearningSolver",
instance: "Instance",
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
) -> None:
assert solver.internal_solver is not None
if not features["Instance"]["Lazy constraint count"] == 0:
logger.info("Instance does not have static lazy constraints. Skipping.")
logger.info("Predicting required lazy constraints...")
self.enforced_cids = set(self.sample_predict(features, training_data))
logger.info("Moving lazy constraints to the pool...")
self.pool = {}
for (cid, cdict) in features["Constraints"].items():
if cdict["Lazy"] and cid not in self.enforced_cids:
self.pool[cid] = LazyConstraint(
cid=cid,
obj=solver.internal_solver.extract_constraint(cid),
)
logger.info(
f"{len(self.enforced_cids)} lazy constraints kept; "
f"{len(self.pool)} moved to the pool"
)
stats["LazyStatic: Removed"] = len(self.pool)
stats["LazyStatic: Kept"] = len(self.enforced_cids)
stats["LazyStatic: Restored"] = 0
self.n_restored = 0
self.n_iterations = 0
instance.found_violated_lazy_constraints = []
if instance.has_static_lazy_constraints():
self._extract_and_predict_static(solver, instance)
def after_solve_mip(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
) -> None:
training_data["LazyStatic: Enforced"] = self.enforced_cids
stats["LazyStatic: Restored"] = self.n_restored
stats["LazyStatic: Iterations"] = self.n_iterations
def iteration_cb(self, solver, instance, model):
def iteration_cb(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
) -> bool:
if solver.use_lazy_cb:
return False
else:
should_repeat = self._check_and_add(instance, solver)
if should_repeat:
return True
else:
if self.is_gap_large:
logger.info("Restoring gap tolerance to %f", self.original_gap)
solver.internal_solver.set_gap_tolerance(self.original_gap)
self.is_gap_large = False
return True
else:
return False
return self._check_and_add(solver)
def lazy_cb(self, solver, instance, model):
self._check_and_add(instance, solver)
def lazy_cb(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
) -> None:
self._check_and_add(solver)
def _check_and_add(self, instance, solver):
logger.debug("Finding violated lazy constraints...")
constraints_to_add = []
for c in self.pool:
def _check_and_add(self, solver: "LearningSolver") -> bool:
assert solver.internal_solver is not None
logger.info("Finding violated lazy constraints...")
enforced: List[LazyConstraint] = []
for (cid, c) in self.pool.items():
if not solver.internal_solver.is_constraint_satisfied(
c.obj, tol=self.violation_tolerance
c.obj,
tol=self.violation_tolerance,
):
constraints_to_add.append(c)
for c in constraints_to_add:
self.pool.remove(c)
enforced.append(c)
logger.info(f"{len(enforced)} violations found")
for c in enforced:
del self.pool[c.cid]
solver.internal_solver.add_constraint(c.obj)
instance.found_violated_lazy_constraints += [c.cid]
if len(constraints_to_add) > 0:
logger.info(
"%8d lazy constraints added %8d in the pool"
% (len(constraints_to_add), len(self.pool))
)
self.enforced_cids.add(c.cid)
self.n_restored += 1
logger.info(
f"{len(enforced)} constraints restored; {len(self.pool)} in the pool"
)
if len(enforced) > 0:
self.n_iterations += 1
return True
else:
return False
def fit(self, training_instances):
training_instances = [
t
for t in training_instances
if hasattr(t, "found_violated_lazy_constraints")
]
logger.debug("Extracting x and y...")
x = self.x(training_instances)
y = self.y(training_instances)
logger.debug("Fitting...")
for category in tqdm(
x.keys(), desc="Fit (lazy)", disable=not sys.stdout.isatty()
):
if category not in self.classifiers:
self.classifiers[category] = self.classifier_prototype.clone()
self.classifiers[category].fit(x[category], y[category])
def predict(self, instance):
pass
def evaluate(self, instances):
pass
def _extract_and_predict_static(self, solver, instance):
x = {}
constraints = {}
logger.info("Extracting lazy constraints...")
for cid in solver.internal_solver.get_constraint_ids():
if instance.is_constraint_lazy(cid):
category = instance.get_constraint_category(cid)
if category not in x:
x[category] = []
constraints[category] = []
x[category] += [instance.get_constraint_features(cid)]
c = LazyConstraint(
cid=cid,
obj=solver.internal_solver.extract_constraint(cid),
)
constraints[category] += [c]
self.pool.append(c)
logger.info("%8d lazy constraints extracted" % len(self.pool))
logger.info("Predicting required lazy constraints...")
n_added = 0
for (category, x_values) in x.items():
def sample_predict(
self,
features: Features,
sample: TrainingSample,
) -> List[str]:
x, y = self.sample_xy(features, sample)
category_to_cids: Dict[Hashable, List[str]] = {}
for (cid, cdict) in features["Constraints"].items():
if "Category" not in cdict or cdict["Category"] is None:
continue
category = cdict["Category"]
if category not in category_to_cids:
category_to_cids[category] = []
category_to_cids[category] += [cid]
enforced_cids: List[str] = []
for category in x.keys():
if category not in self.classifiers:
continue
if isinstance(x_values[0], np.ndarray):
x[category] = np.array(x_values)
proba = self.classifiers[category].predict_proba(x[category])
for i in range(len(proba)):
if proba[i][1] > self.threshold:
n_added += 1
c = constraints[category][i]
self.pool.remove(c)
solver.internal_solver.add_constraint(c.obj)
instance.found_violated_lazy_constraints += [c.cid]
logger.info(
"%8d lazy constraints added %8d in the pool"
% (
n_added,
len(self.pool),
)
)
def _collect_constraints(self, train_instances):
constraints = {}
for instance in train_instances:
for cid in instance.found_violated_lazy_constraints:
category = instance.get_constraint_category(cid)
if category not in constraints:
constraints[category] = set()
constraints[category].add(cid)
for (category, cids) in constraints.items():
constraints[category] = sorted(list(cids))
return constraints
def x(self, train_instances):
result = {}
constraints = self._collect_constraints(train_instances)
for (category, cids) in constraints.items():
result[category] = []
for instance in train_instances:
for cid in cids:
result[category].append(instance.get_constraint_features(cid))
return result
def y(self, train_instances):
result = {}
constraints = self._collect_constraints(train_instances)
for (category, cids) in constraints.items():
result[category] = []
for instance in train_instances:
for cid in cids:
if cid in instance.found_violated_lazy_constraints:
result[category].append([0, 1])
else:
result[category].append([1, 0])
return result
clf = self.classifiers[category]
proba = clf.predict_proba(np.array(x[category]))
pred = list(proba[:, 1] > self.threshold)
for (i, is_selected) in enumerate(pred):
if is_selected:
enforced_cids += [category_to_cids[category][i]]
return enforced_cids
@staticmethod
def sample_xy(
features: Features,
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
x: Dict = {}
y: Dict = {}
for (cid, cfeatures) in features["Constraints"].items():
@@ -227,3 +187,13 @@ class StaticLazyConstraintsComponent(Component):
else:
y[category] += [[True, False]]
return x, y
def fit_xy(
self,
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for c in y.keys():
assert c in x
self.classifiers[c] = self.classifier_prototype.clone()
self.classifiers[c].fit(x[c], y[c])

View File

@@ -58,8 +58,8 @@ class ObjectiveValueComponent(Component):
def fit_xy(
self,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for c in ["Upper bound", "Lower bound"]:
if c in y:
@@ -84,9 +84,9 @@ class ObjectiveValueComponent(Component):
def sample_xy(
features: Features,
sample: TrainingSample,
) -> Tuple[Dict[str, List[List[float]]], Dict[str, List[List[float]]]]:
x: Dict[str, List[List[float]]] = {}
y: Dict[str, List[List[float]]] = {}
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[float]]] = {}
f = list(features["Instance"]["User features"])
if "LP value" in sample and sample["LP value"] is not None:
f += [sample["LP value"]]

View File

@@ -148,7 +148,7 @@ class PrimalSolutionComponent(Component):
def sample_xy(
features: Features,
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
x: Dict = {}
y: Dict = {}
solution: Optional[Solution] = None
@@ -227,8 +227,8 @@ class PrimalSolutionComponent(Component):
def fit_xy(
self,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for category in x.keys():
clf = self.classifier_prototype.clone()