mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Bump version to 0.4
This commit is contained in:
2
Makefile
2
Makefile
@@ -3,7 +3,7 @@ PYTEST := pytest
|
|||||||
PIP := $(PYTHON) -m pip
|
PIP := $(PYTHON) -m pip
|
||||||
MYPY := $(PYTHON) -m mypy
|
MYPY := $(PYTHON) -m mypy
|
||||||
PYTEST_ARGS := -W ignore::DeprecationWarning -vv --log-level=DEBUG
|
PYTEST_ARGS := -W ignore::DeprecationWarning -vv --log-level=DEBUG
|
||||||
VERSION := 0.3
|
VERSION := 0.4
|
||||||
|
|
||||||
all: docs test
|
all: docs test
|
||||||
|
|
||||||
|
|||||||
29
README.md
29
README.md
@@ -22,21 +22,22 @@ Documentation
|
|||||||
-------------
|
-------------
|
||||||
|
|
||||||
- Tutorials:
|
- Tutorials:
|
||||||
1. [Getting started (Pyomo)](https://anl-ceeesa.github.io/MIPLearn/0.3/tutorials/getting-started-pyomo/)
|
1. [Getting started (Pyomo)](https://anl-ceeesa.github.io/MIPLearn/0.4/tutorials/getting-started-pyomo/)
|
||||||
2. [Getting started (Gurobipy)](https://anl-ceeesa.github.io/MIPLearn/0.3/tutorials/getting-started-gurobipy/)
|
2. [Getting started (Gurobipy)](https://anl-ceeesa.github.io/MIPLearn/0.4/tutorials/getting-started-gurobipy/)
|
||||||
3. [Getting started (JuMP)](https://anl-ceeesa.github.io/MIPLearn/0.3/tutorials/getting-started-jump/)
|
3. [Getting started (JuMP)](https://anl-ceeesa.github.io/MIPLearn/0.4/tutorials/getting-started-jump/)
|
||||||
|
4. [User cuts and lazy constraints](https://anl-ceeesa.github.io/MIPLearn/0.4/tutorials/cuts-gurobipy/)
|
||||||
- User Guide
|
- User Guide
|
||||||
1. [Benchmark problems](https://anl-ceeesa.github.io/MIPLearn/0.3/guide/problems/)
|
1. [Benchmark problems](https://anl-ceeesa.github.io/MIPLearn/0.4/guide/problems/)
|
||||||
2. [Training data collectors](https://anl-ceeesa.github.io/MIPLearn/0.3/guide/collectors/)
|
2. [Training data collectors](https://anl-ceeesa.github.io/MIPLearn/0.4/guide/collectors/)
|
||||||
3. [Feature extractors](https://anl-ceeesa.github.io/MIPLearn/0.3/guide/features/)
|
3. [Feature extractors](https://anl-ceeesa.github.io/MIPLearn/0.4/guide/features/)
|
||||||
4. [Primal components](https://anl-ceeesa.github.io/MIPLearn/0.3/guide/primal/)
|
4. [Primal components](https://anl-ceeesa.github.io/MIPLearn/0.4/guide/primal/)
|
||||||
5. [Learning solver](https://anl-ceeesa.github.io/MIPLearn/0.3/guide/solvers/)
|
5. [Learning solver](https://anl-ceeesa.github.io/MIPLearn/0.4/guide/solvers/)
|
||||||
- Python API Reference
|
- Python API Reference
|
||||||
1. [Benchmark problems](https://anl-ceeesa.github.io/MIPLearn/0.3/api/problems/)
|
1. [Benchmark problems](https://anl-ceeesa.github.io/MIPLearn/0.4/api/problems/)
|
||||||
2. [Collectors & extractors](https://anl-ceeesa.github.io/MIPLearn/0.3/api/collectors/)
|
2. [Collectors & extractors](https://anl-ceeesa.github.io/MIPLearn/0.4/api/collectors/)
|
||||||
3. [Components](https://anl-ceeesa.github.io/MIPLearn/0.3/api/components/)
|
3. [Components](https://anl-ceeesa.github.io/MIPLearn/0.4/api/components/)
|
||||||
4. [Solvers](https://anl-ceeesa.github.io/MIPLearn/0.3/api/solvers/)
|
4. [Solvers](https://anl-ceeesa.github.io/MIPLearn/0.4/api/solvers/)
|
||||||
5. [Helpers](https://anl-ceeesa.github.io/MIPLearn/0.3/api/helpers/)
|
5. [Helpers](https://anl-ceeesa.github.io/MIPLearn/0.4/api/helpers/)
|
||||||
|
|
||||||
Authors
|
Authors
|
||||||
-------
|
-------
|
||||||
@@ -58,7 +59,7 @@ Citing MIPLearn
|
|||||||
|
|
||||||
If you use MIPLearn in your research (either the solver or the included problem generators), we kindly request that you cite the package as follows:
|
If you use MIPLearn in your research (either the solver or the included problem generators), we kindly request that you cite the package as follows:
|
||||||
|
|
||||||
* **Alinson S. Xavier, Feng Qiu, Xiaoyi Gu, Berkay Becu, Santanu S. Dey.** *MIPLearn: An Extensible Framework for Learning-Enhanced Optimization (Version 0.3)*. Zenodo (2023). DOI: [10.5281/zenodo.4287567](https://doi.org/10.5281/zenodo.4287567)
|
* **Alinson S. Xavier, Feng Qiu, Xiaoyi Gu, Berkay Becu, Santanu S. Dey.** *MIPLearn: An Extensible Framework for Learning-Enhanced Optimization (Version 0.4)*. Zenodo (2024). DOI: [10.5281/zenodo.4287567](https://doi.org/10.5281/zenodo.4287567)
|
||||||
|
|
||||||
If you use MIPLearn in the field of power systems optimization, we kindly request that you cite the reference below, in which the main techniques implemented in MIPLearn were first developed:
|
If you use MIPLearn in the field of power systems optimization, we kindly request that you cite the reference below, in which the main techniques implemented in MIPLearn were first developed:
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user