|
|
|
@ -14,22 +14,26 @@ Usage:
|
|
|
|
|
Options:
|
|
|
|
|
-h --help Show this screen
|
|
|
|
|
"""
|
|
|
|
|
from docopt import docopt
|
|
|
|
|
import importlib, pathlib
|
|
|
|
|
from miplearn import (LearningSolver, BenchmarkRunner)
|
|
|
|
|
from numpy import median
|
|
|
|
|
import pyomo.environ as pe
|
|
|
|
|
import pickle
|
|
|
|
|
import importlib
|
|
|
|
|
import logging
|
|
|
|
|
import pathlib
|
|
|
|
|
import pickle
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(format='%(asctime)s %(levelname).1s %(name)s: %(message)12s',
|
|
|
|
|
datefmt='%H:%M:%S',
|
|
|
|
|
from docopt import docopt
|
|
|
|
|
from numpy import median
|
|
|
|
|
|
|
|
|
|
from miplearn import LearningSolver, BenchmarkRunner
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
|
format="%(asctime)s %(levelname).1s %(name)s: %(message)12s",
|
|
|
|
|
datefmt="%H:%M:%S",
|
|
|
|
|
level=logging.INFO,
|
|
|
|
|
stream=sys.stdout)
|
|
|
|
|
logging.getLogger('gurobipy').setLevel(logging.ERROR)
|
|
|
|
|
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
|
|
|
|
logging.getLogger('miplearn').setLevel(logging.INFO)
|
|
|
|
|
stream=sys.stdout,
|
|
|
|
|
)
|
|
|
|
|
logging.getLogger("gurobipy").setLevel(logging.ERROR)
|
|
|
|
|
logging.getLogger("pyomo.core").setLevel(logging.ERROR)
|
|
|
|
|
logging.getLogger("miplearn").setLevel(logging.INFO)
|
|
|
|
|
logger = logging.getLogger("benchmark")
|
|
|
|
|
|
|
|
|
|
n_jobs = 10
|
|
|
|
@ -50,6 +54,7 @@ def save(obj, filename):
|
|
|
|
|
|
|
|
|
|
def load(filename):
|
|
|
|
|
import pickle
|
|
|
|
|
|
|
|
|
|
with open(filename, "rb") as file:
|
|
|
|
|
return pickle.load(file)
|
|
|
|
|
|
|
|
|
@ -60,9 +65,11 @@ def train():
|
|
|
|
|
challenge = getattr(pkg, challenge_name)()
|
|
|
|
|
train_instances = challenge.training_instances
|
|
|
|
|
test_instances = challenge.test_instances
|
|
|
|
|
solver = LearningSolver(time_limit=train_time_limit,
|
|
|
|
|
solver = LearningSolver(
|
|
|
|
|
time_limit=train_time_limit,
|
|
|
|
|
solver=internal_solver,
|
|
|
|
|
components={})
|
|
|
|
|
components={},
|
|
|
|
|
)
|
|
|
|
|
solver.parallel_solve(train_instances, n_jobs=n_jobs)
|
|
|
|
|
save(train_instances, "%s/train_instances.bin" % basepath)
|
|
|
|
|
save(test_instances, "%s/test_instances.bin" % basepath)
|
|
|
|
@ -109,6 +116,7 @@ def test_ml():
|
|
|
|
|
def charts():
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
sns.set_style("whitegrid")
|
|
|
|
|
sns.set_palette("Blues_r")
|
|
|
|
|
benchmark = BenchmarkRunner({})
|
|
|
|
@ -126,69 +134,70 @@ def charts():
|
|
|
|
|
obj_column = "Lower Bound"
|
|
|
|
|
predicted_obj_column = "Predicted LB"
|
|
|
|
|
|
|
|
|
|
palette={
|
|
|
|
|
"baseline": "#9b59b6",
|
|
|
|
|
"ml-exact": "#3498db",
|
|
|
|
|
"ml-heuristic": "#95a5a6"
|
|
|
|
|
}
|
|
|
|
|
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
|
|
|
|
|
palette = {"baseline": "#9b59b6", "ml-exact": "#3498db", "ml-heuristic": "#95a5a6"}
|
|
|
|
|
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
|
|
|
|
nrows=1,
|
|
|
|
|
ncols=4,
|
|
|
|
|
figsize=(12,4),
|
|
|
|
|
gridspec_kw={'width_ratios': [2, 1, 1, 2]},
|
|
|
|
|
figsize=(12, 4),
|
|
|
|
|
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
|
|
|
|
)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
sns.stripplot(
|
|
|
|
|
x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=ax1,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
palette=palette,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
sns.barplot(x="Solver",
|
|
|
|
|
)
|
|
|
|
|
sns.barplot(
|
|
|
|
|
x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=ax1,
|
|
|
|
|
errwidth=0.,
|
|
|
|
|
errwidth=0.0,
|
|
|
|
|
alpha=0.4,
|
|
|
|
|
palette=palette,
|
|
|
|
|
estimator=median,
|
|
|
|
|
);
|
|
|
|
|
ax1.set(ylabel='Wallclock Time (s)')
|
|
|
|
|
)
|
|
|
|
|
ax1.set(ylabel="Wallclock Time (s)")
|
|
|
|
|
ax2.set_ylim(-0.5, 5.5)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
sns.stripplot(
|
|
|
|
|
x="Solver",
|
|
|
|
|
y="Gap (%)",
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Solver"] != "ml-heuristic"],
|
|
|
|
|
ax=ax2,
|
|
|
|
|
palette=palette,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
ax3.set_ylim(0.95,1.05)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
)
|
|
|
|
|
ax3.set_ylim(0.95, 1.05)
|
|
|
|
|
sns.stripplot(
|
|
|
|
|
x="Solver",
|
|
|
|
|
y=primal_column,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Solver"] == "ml-heuristic"],
|
|
|
|
|
ax=ax3,
|
|
|
|
|
palette=palette,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
sns.scatterplot(x=obj_column,
|
|
|
|
|
sns.scatterplot(
|
|
|
|
|
x=obj_column,
|
|
|
|
|
y=predicted_obj_column,
|
|
|
|
|
hue="Solver",
|
|
|
|
|
data=results[results["Solver"] == "ml-exact"],
|
|
|
|
|
ax=ax4,
|
|
|
|
|
palette=palette,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls="-", color="#cccccc")
|
|
|
|
|
ax4.set_xlim(xlim)
|
|
|
|
|
ax4.set_ylim(ylim)
|
|
|
|
|
ax4.get_legend().remove()
|
|
|
|
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
plt.savefig("%s/performance.png" % basepath,
|
|
|
|
|
bbox_inches='tight',
|
|
|
|
|
dpi=150)
|
|
|
|
|
plt.savefig("%s/performance.png" % basepath, bbox_inches="tight", dpi=150)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
if args["train"]:
|
|
|
|
|