|
|
|
@ -5,6 +5,8 @@
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
import logging
|
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
|
|
from .solvers.learning import LearningSolver
|
|
|
|
@ -19,22 +21,30 @@ class BenchmarkRunner:
|
|
|
|
|
self.results = None
|
|
|
|
|
|
|
|
|
|
def solve(self, instances, tee=False):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
|
for i in tqdm(range(len((instances)))):
|
|
|
|
|
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
|
|
|
|
self._push_result(results, solver=solver, name=name, instance=i)
|
|
|
|
|
self._push_result(results, solver=solver, solver_name=solver_name, instance=i)
|
|
|
|
|
|
|
|
|
|
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
|
|
|
|
|
instances = instances * n_trials
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
results = solver.parallel_solve(instances,
|
|
|
|
|
def parallel_solve(self,
|
|
|
|
|
instances,
|
|
|
|
|
n_jobs=1,
|
|
|
|
|
n_trials=1,
|
|
|
|
|
index_offset=0,
|
|
|
|
|
):
|
|
|
|
|
self._silence_miplearn_logger()
|
|
|
|
|
trials = instances * n_trials
|
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
|
results = solver.parallel_solve(trials,
|
|
|
|
|
n_jobs=n_jobs,
|
|
|
|
|
label="Solve (%s)" % name)
|
|
|
|
|
for i in range(len(instances)):
|
|
|
|
|
label="Solve (%s)" % solver_name)
|
|
|
|
|
for i in range(len(trials)):
|
|
|
|
|
idx = (i % len(instances)) + index_offset
|
|
|
|
|
self._push_result(results[i],
|
|
|
|
|
solver=solver,
|
|
|
|
|
name=name,
|
|
|
|
|
instance=i)
|
|
|
|
|
solver_name=solver_name,
|
|
|
|
|
instance=idx)
|
|
|
|
|
self._restore_miplearn_logger()
|
|
|
|
|
|
|
|
|
|
def raw_results(self):
|
|
|
|
|
return self.results
|
|
|
|
@ -46,14 +56,14 @@ class BenchmarkRunner:
|
|
|
|
|
self.results = pd.read_csv(filename, index_col=0)
|
|
|
|
|
|
|
|
|
|
def load_state(self, filename):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
|
solver.load_state(filename)
|
|
|
|
|
|
|
|
|
|
def fit(self, training_instances):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
|
solver.fit(training_instances)
|
|
|
|
|
|
|
|
|
|
def _push_result(self, result, solver, name, instance):
|
|
|
|
|
def _push_result(self, result, solver, solver_name, instance):
|
|
|
|
|
if self.results is None:
|
|
|
|
|
self.results = pd.DataFrame(columns=["Solver",
|
|
|
|
|
"Instance",
|
|
|
|
@ -74,7 +84,7 @@ class BenchmarkRunner:
|
|
|
|
|
result["Predicted LB"] = float("nan")
|
|
|
|
|
result["Predicted UB"] = float("nan")
|
|
|
|
|
self.results = self.results.append({
|
|
|
|
|
"Solver": name,
|
|
|
|
|
"Solver": solver_name,
|
|
|
|
|
"Instance": instance,
|
|
|
|
|
"Wallclock Time": result["Wallclock time"],
|
|
|
|
|
"Lower Bound": lb,
|
|
|
|
@ -90,7 +100,7 @@ class BenchmarkRunner:
|
|
|
|
|
best_lower_bound = groups["Lower Bound"].transform("max")
|
|
|
|
|
best_upper_bound = groups["Upper Bound"].transform("min")
|
|
|
|
|
best_gap = groups["Gap"].transform("min")
|
|
|
|
|
best_nodes = groups["Nodes"].transform("min")
|
|
|
|
|
best_nodes = np.maximum(1, groups["Nodes"].transform("min"))
|
|
|
|
|
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
|
|
|
|
self.results["Relative Lower Bound"] = \
|
|
|
|
|
self.results["Lower Bound"] / best_lower_bound
|
|
|
|
@ -135,7 +145,7 @@ class BenchmarkRunner:
|
|
|
|
|
ax=ax1,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
sns.barplot(x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
@ -143,7 +153,7 @@ class BenchmarkRunner:
|
|
|
|
|
errwidth=0.,
|
|
|
|
|
alpha=0.4,
|
|
|
|
|
estimator=median,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
ax1.set(ylabel='Wallclock Time (s)')
|
|
|
|
|
|
|
|
|
|
# Figure 2: Solver x Gap (%)
|
|
|
|
@ -154,7 +164,7 @@ class BenchmarkRunner:
|
|
|
|
|
data=results[results["Mode"] != "heuristic"],
|
|
|
|
|
ax=ax2,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Figure 3: Solver x Primal Value
|
|
|
|
|
ax3.set_ylim(0.95,1.05)
|
|
|
|
@ -163,7 +173,7 @@ class BenchmarkRunner:
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Mode"] == "heuristic"],
|
|
|
|
|
ax=ax3,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Figure 4: Predicted vs Actual Objective Value
|
|
|
|
|
sns.scatterplot(x=obj_column,
|
|
|
|
@ -171,12 +181,23 @@ class BenchmarkRunner:
|
|
|
|
|
hue="Solver",
|
|
|
|
|
data=results[results["Mode"] != "heuristic"],
|
|
|
|
|
ax=ax4,
|
|
|
|
|
);
|
|
|
|
|
)
|
|
|
|
|
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc")
|
|
|
|
|
ax4.set_xlim(xlim)
|
|
|
|
|
ax4.set_ylim(ylim)
|
|
|
|
|
ax4.get_legend().remove()
|
|
|
|
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
plt.savefig(filename, bbox_inches='tight', dpi=150)
|
|
|
|
|
plt.savefig(filename, bbox_inches='tight', dpi=150)
|
|
|
|
|
|
|
|
|
|
def _silence_miplearn_logger(self):
|
|
|
|
|
miplearn_logger = logging.getLogger("miplearn")
|
|
|
|
|
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
|
|
|
|
miplearn_logger.setLevel(logging.WARNING)
|
|
|
|
|
|
|
|
|
|
def _restore_miplearn_logger(self):
|
|
|
|
|
miplearn_logger = logging.getLogger("miplearn")
|
|
|
|
|
miplearn_logger.setLevel(self.prev_log_level)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|