mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
DropRedundant: Make x_y parallel
This commit is contained in:
@@ -289,8 +289,7 @@ def test_x_y_fit_predict_evaluate():
|
||||
}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
actual_x = component.x(instances)
|
||||
actual_y = component.y(instances)
|
||||
actual_x, actual_y = component.x_y(instances)
|
||||
for category in ["type-a", "type-b"]:
|
||||
np.testing.assert_array_equal(actual_x[category], expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y[category], expected_y[category])
|
||||
@@ -392,9 +391,7 @@ def test_x_multiple_solves():
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
component = DropRedundantInequalitiesStep()
|
||||
actual_x = component.x([instance])
|
||||
actual_y = component.y([instance])
|
||||
print(actual_x)
|
||||
actual_x, actual_y = component.x_y([instance])
|
||||
for category in ["type-a", "type-b"]:
|
||||
np.testing.assert_array_equal(actual_x[category], expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y[category], expected_y[category])
|
||||
|
||||
Reference in New Issue
Block a user