Reorganize directories

This commit is contained in:
2020-03-05 17:58:56 -06:00
parent 37795fe013
commit 7765d1f822
50 changed files with 168 additions and 11 deletions

View File

@@ -1,4 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.

View File

@@ -1,37 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn import LearningSolver, BenchmarkRunner
from miplearn.problems.stab import MaxWeightStableSetGenerator
from scipy.stats import randint
import numpy as np
import pyomo.environ as pe
import os.path
def test_benchmark():
# Generate training and test instances
train_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(5)
test_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(),
"Strategy B": LearningSolver(),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.fit(train_instances)
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
assert benchmark.raw_results().values.shape == (12,16)
benchmark.save_results("/tmp/benchmark.csv")
assert os.path.isfile("/tmp/benchmark.csv")
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_results("/tmp/benchmark.csv")
assert benchmark.raw_results().values.shape == (12,16)

View File

@@ -1,62 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn.problems.knapsack import KnapsackInstance
from miplearn import (LearningSolver,
SolutionExtractor,
InstanceFeaturesExtractor,
VariableFeaturesExtractor,
)
import numpy as np
import pyomo.environ as pe
def _get_instances():
instances = [
KnapsackInstance(weights=[1., 2., 3.],
prices=[10., 20., 30.],
capacity=2.5,
),
KnapsackInstance(weights=[3., 4., 5.],
prices=[20., 30., 40.],
capacity=4.5,
),
]
models = [instance.to_model() for instance in instances]
solver = LearningSolver()
for (i, instance) in enumerate(instances):
solver.solve(instances[i], models[i])
return instances, models
def test_solution_extractor():
instances, models = _get_instances()
features = SolutionExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features.keys()
assert isinstance(features["default"], np.ndarray)
assert features["default"].shape == (6, 2)
assert features["default"].ravel().tolist() == [
1., 0.,
0., 1.,
1., 0.,
1., 0.,
0., 1.,
1., 0.,
]
def test_instance_features_extractor():
instances, models = _get_instances()
features = InstanceFeaturesExtractor().extract(instances)
assert features.shape == (2,3)
def test_variable_features_extractor():
instances, models = _get_instances()
features = VariableFeaturesExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features
assert features["default"].shape == (6,5)

View File

@@ -1,51 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn import LearningSolver, BranchPriorityComponent
from miplearn.problems.knapsack import KnapsackInstance
def _get_instance():
return KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
)
def test_solver():
instance = _get_instance()
for mode in ["exact", "heuristic"]:
for internal_solver in ["cplex", "gurobi"]:
solver = LearningSolver(time_limit=300,
gap_tolerance=1e-3,
threads=1,
solver=internal_solver,
mode=mode,
)
results = solver.solve(instance)
assert instance.solution["x"][0] == 1.0
assert instance.solution["x"][1] == 0.0
assert instance.solution["x"][2] == 1.0
assert instance.solution["x"][3] == 1.0
assert instance.lower_bound == 1183.0
assert instance.upper_bound == 1183.0
assert round(instance.lp_solution["x"][0], 3) == 1.000
assert round(instance.lp_solution["x"][1], 3) == 0.923
assert round(instance.lp_solution["x"][2], 3) == 1.000
assert round(instance.lp_solution["x"][3], 3) == 0.000
assert round(instance.lp_value, 3) == 1287.923
solver.fit()
solver.solve(instance)
def test_parallel_solve():
instances = [_get_instance() for _ in range(10)]
solver = LearningSolver()
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
for instance in instances:
assert len(instance.solution["x"].keys()) == 4