mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Refactor ObjectiveValueComponent
This commit is contained in:
@@ -154,6 +154,12 @@ class Component:
|
||||
x: Dict[str, np.ndarray],
|
||||
y: Dict[str, np.ndarray],
|
||||
) -> None:
|
||||
"""
|
||||
Given two dictionaries x and y, mapping the name of the category to matrices
|
||||
of features and targets, this function does two things. First, for each
|
||||
category, it creates a clone of the prototype regressor/classifier. Second,
|
||||
it passes (x[category], y[category]) to the clone's fit method.
|
||||
"""
|
||||
return
|
||||
|
||||
def iteration_cb(
|
||||
|
||||
@@ -35,15 +35,12 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lb_regressor: Regressor = ScikitLearnRegressor(LinearRegression()),
|
||||
ub_regressor: Regressor = ScikitLearnRegressor(LinearRegression()),
|
||||
regressor: Regressor = ScikitLearnRegressor(LinearRegression()),
|
||||
) -> None:
|
||||
assert isinstance(lb_regressor, Regressor)
|
||||
assert isinstance(ub_regressor, Regressor)
|
||||
assert isinstance(regressor, Regressor)
|
||||
self.ub_regressor: Optional[Regressor] = None
|
||||
self.lb_regressor: Optional[Regressor] = None
|
||||
self.lb_regressor_prototype = lb_regressor
|
||||
self.ub_regressor_prototype = ub_regressor
|
||||
self.regressor_prototype = regressor
|
||||
self._predicted_ub: Optional[float] = None
|
||||
self._predicted_lb: Optional[float] = None
|
||||
|
||||
@@ -56,65 +53,28 @@ class ObjectiveValueComponent(Component):
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
if self.ub_regressor is not None:
|
||||
logger.info("Predicting optimal value...")
|
||||
pred = self.predict([instance])
|
||||
predicted_lb = pred["Upper bound"][0]
|
||||
predicted_ub = pred["Lower bound"][0]
|
||||
logger.info("Predicted LB=%.2f, UB=%.2f" % (predicted_lb, predicted_ub))
|
||||
if predicted_ub is not None:
|
||||
stats["Objective: Predicted UB"] = predicted_ub
|
||||
if predicted_lb is not None:
|
||||
stats["Objective: Predicted LB"] = predicted_lb
|
||||
logger.info("Predicting optimal value...")
|
||||
pred = self.sample_predict(features, training_data)
|
||||
if "Upper bound" in pred:
|
||||
ub = pred["Upper bound"]
|
||||
logger.info("Predicted upper bound: %.6e" % ub)
|
||||
stats["Objective: Predicted UB"] = ub
|
||||
if "Lower bound" in pred:
|
||||
lb = pred["Lower bound"]
|
||||
logger.info("Predicted lower bound: %.6e" % lb)
|
||||
stats["Objective: Predicted LB"] = lb
|
||||
|
||||
def fit(self, training_instances: Union[List[str], List[Instance]]) -> None:
|
||||
self.lb_regressor = self.lb_regressor_prototype.clone()
|
||||
self.ub_regressor = self.ub_regressor_prototype.clone()
|
||||
logger.debug("Extracting features...")
|
||||
x_train = self.x(training_instances)
|
||||
y_train = self.y(training_instances)
|
||||
logger.debug("Fitting lb_regressor...")
|
||||
self.lb_regressor.fit(x_train, y_train["Lower bound"])
|
||||
logger.debug("Fitting ub_regressor...")
|
||||
self.ub_regressor.fit(x_train, y_train["Upper bound"])
|
||||
|
||||
def predict(
|
||||
def fit_xy(
|
||||
self,
|
||||
instances: Union[List[str], List[Instance]],
|
||||
) -> Dict[str, List[float]]:
|
||||
assert self.lb_regressor is not None
|
||||
assert self.ub_regressor is not None
|
||||
x_test = self.x(instances)
|
||||
(n_samples, n_features) = x_test.shape
|
||||
lb = self.lb_regressor.predict(x_test)
|
||||
ub = self.ub_regressor.predict(x_test)
|
||||
assert lb.shape == (n_samples, 1)
|
||||
assert ub.shape == (n_samples, 1)
|
||||
return {
|
||||
"Lower bound": lb.ravel().tolist(),
|
||||
"Upper bound": ub.ravel().tolist(),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def x(instances: Union[List[str], List[Instance]]) -> np.ndarray:
|
||||
result = []
|
||||
for instance in InstanceIterator(instances):
|
||||
for sample in instance.training_data:
|
||||
result.append(instance.get_instance_features() + [sample["LP value"]])
|
||||
return np.array(result)
|
||||
|
||||
@staticmethod
|
||||
def y(instances: Union[List[str], List[Instance]]) -> Dict[str, np.ndarray]:
|
||||
ub: List[List[float]] = []
|
||||
lb: List[List[float]] = []
|
||||
for instance in InstanceIterator(instances):
|
||||
for sample in instance.training_data:
|
||||
lb.append([sample["Lower bound"]])
|
||||
ub.append([sample["Upper bound"]])
|
||||
return {
|
||||
"Lower bound": np.array(lb),
|
||||
"Upper bound": np.array(ub),
|
||||
}
|
||||
x: Dict[str, np.ndarray],
|
||||
y: Dict[str, np.ndarray],
|
||||
) -> None:
|
||||
if "Lower bound" in y:
|
||||
self.lb_regressor = self.regressor_prototype.clone()
|
||||
self.lb_regressor.fit(x["Lower bound"], y["Lower bound"])
|
||||
if "Upper bound" in y:
|
||||
self.ub_regressor = self.regressor_prototype.clone()
|
||||
self.ub_regressor.fit(x["Upper bound"], y["Upper bound"])
|
||||
|
||||
# def evaluate(
|
||||
# self,
|
||||
@@ -153,23 +113,39 @@ class ObjectiveValueComponent(Component):
|
||||
# }
|
||||
# return ev
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[str, float]:
|
||||
pred: Dict[str, float] = {}
|
||||
x, _ = self.sample_xy(features, sample)
|
||||
if self.lb_regressor is not None:
|
||||
lb_pred = self.lb_regressor.predict(np.array(x["Lower bound"]))
|
||||
pred["Lower bound"] = lb_pred[0, 0]
|
||||
else:
|
||||
logger.info("Lower bound regressor not fitted. Skipping.")
|
||||
if self.ub_regressor is not None:
|
||||
ub_pred = self.ub_regressor.predict(np.array(x["Upper bound"]))
|
||||
pred["Upper bound"] = ub_pred[0, 0]
|
||||
else:
|
||||
logger.info("Upper bound regressor not fitted. Skipping.")
|
||||
return pred
|
||||
|
||||
@staticmethod
|
||||
def sample_xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
f = features["Instance"]["User features"]
|
||||
) -> Tuple[Dict[str, List[List[float]]], Dict[str, List[List[float]]]]:
|
||||
x: Dict[str, List[List[float]]] = {}
|
||||
y: Dict[str, List[List[float]]] = {}
|
||||
f = list(features["Instance"]["User features"])
|
||||
if "LP value" in sample and sample["LP value"] is not None:
|
||||
f += [sample["LP value"]]
|
||||
x = {
|
||||
"Lower bound": [f],
|
||||
"Upper bound": [f],
|
||||
}
|
||||
if "Lower bound" in sample:
|
||||
y = {
|
||||
"Lower bound": [[sample["Lower bound"]]],
|
||||
"Upper bound": [[sample["Upper bound"]]],
|
||||
}
|
||||
return x, y
|
||||
else:
|
||||
return x, {}
|
||||
x["Lower bound"] = [f]
|
||||
x["Upper bound"] = [f]
|
||||
if "Lower bound" in sample and sample["Lower bound"] is not None:
|
||||
y["Lower bound"] = [[sample["Lower bound"]]]
|
||||
if "Upper bound" in sample and sample["Upper bound"] is not None:
|
||||
y["Upper bound"] = [[sample["Upper bound"]]]
|
||||
return x, y
|
||||
|
||||
Reference in New Issue
Block a user