mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use np.array for Variables.names
This commit is contained in:
@@ -95,7 +95,7 @@ class PrimalSolutionComponent(Component):
|
||||
)
|
||||
|
||||
def sample_predict(self, sample: Sample) -> Solution:
|
||||
var_names = sample.get_vector("static_var_names")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_vector("static_var_categories")
|
||||
assert var_names is not None
|
||||
assert var_categories is not None
|
||||
@@ -145,7 +145,7 @@ class PrimalSolutionComponent(Component):
|
||||
instance_features = sample.get_vector("static_instance_features")
|
||||
mip_var_values = sample.get_vector("mip_var_values")
|
||||
var_features = sample.get_vector_list("lp_var_features")
|
||||
var_names = sample.get_vector("static_var_names")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_vector("static_var_categories")
|
||||
if var_features is None:
|
||||
var_features = sample.get_vector_list("static_var_features")
|
||||
@@ -187,8 +187,8 @@ class PrimalSolutionComponent(Component):
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Dict[str, Dict[str, float]]:
|
||||
mip_var_values = sample.get_vector("mip_var_values")
|
||||
var_names = sample.get_vector("static_var_names")
|
||||
mip_var_values = sample.get_array("mip_var_values")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
assert mip_var_values is not None
|
||||
assert var_names is not None
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
import collections
|
||||
import numbers
|
||||
from math import log, isfinite
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Any, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Any, Tuple, KeysView, cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -34,7 +34,7 @@ class FeaturesExtractor:
|
||||
variables = solver.get_variables(with_static=True)
|
||||
constraints = solver.get_constraints(with_static=True, with_lhs=self.with_lhs)
|
||||
sample.put_array("static_var_lower_bounds", variables.lower_bounds)
|
||||
sample.put_vector("static_var_names", variables.names)
|
||||
sample.put_array("static_var_names", variables.names)
|
||||
sample.put_array("static_var_obj_coeffs", variables.obj_coeffs)
|
||||
sample.put_vector("static_var_types", variables.types)
|
||||
sample.put_array("static_var_upper_bounds", variables.upper_bounds)
|
||||
@@ -139,12 +139,29 @@ class FeaturesExtractor:
|
||||
instance: "Instance",
|
||||
sample: Sample,
|
||||
) -> Tuple[List, List]:
|
||||
categories: List[Optional[str]] = []
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
var_features_dict = instance.get_variable_features()
|
||||
var_categories_dict = instance.get_variable_categories()
|
||||
var_names = sample.get_vector("static_var_names")
|
||||
# Query variable names
|
||||
var_names = sample.get_array("static_var_names")
|
||||
assert var_names is not None
|
||||
|
||||
# Query variable features and categories
|
||||
var_features_dict = {
|
||||
v.encode(): f for (v, f) in instance.get_variable_features().items()
|
||||
}
|
||||
var_categories_dict = {
|
||||
v.encode(): f for (v, f) in instance.get_variable_categories().items()
|
||||
}
|
||||
|
||||
# Assert that variables in user-provided dicts actually exist
|
||||
var_names_set = set(var_names)
|
||||
for keys in [var_features_dict.keys(), var_categories_dict.keys()]:
|
||||
for vn in cast(KeysView, keys):
|
||||
assert (
|
||||
vn in var_names_set
|
||||
), f"Variable {vn!r} not found in the problem; {var_names_set}"
|
||||
|
||||
# Assemble into compact lists
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
categories: List[Optional[str]] = []
|
||||
for (i, var_name) in enumerate(var_names):
|
||||
if var_name not in var_categories_dict:
|
||||
user_features.append(None)
|
||||
|
||||
@@ -73,11 +73,11 @@ class GurobiSolver(InternalSolver):
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
self._varname_to_var: Dict[str, "gurobipy.Var"] = {}
|
||||
self._varname_to_var: Dict[bytes, "gurobipy.Var"] = {}
|
||||
self._cname_to_constr: Dict[str, "gurobipy.Constr"] = {}
|
||||
self._gp_vars: List["gurobipy.Var"] = []
|
||||
self._gp_constrs: List["gurobipy.Constr"] = []
|
||||
self._var_names: List[str] = []
|
||||
self._var_names: np.ndarray = np.empty(0)
|
||||
self._constr_names: List[str] = []
|
||||
self._var_types: List[str] = []
|
||||
self._var_lbs: np.ndarray = np.empty(0)
|
||||
@@ -263,11 +263,13 @@ class GurobiSolver(InternalSolver):
|
||||
if self.cb_where is not None:
|
||||
if self.cb_where == self.gp.GRB.Callback.MIPNODE:
|
||||
return {
|
||||
v.varName: self.model.cbGetNodeRel(v) for v in self.model.getVars()
|
||||
v.varName.encode(): self.model.cbGetNodeRel(v)
|
||||
for v in self.model.getVars()
|
||||
}
|
||||
elif self.cb_where == self.gp.GRB.Callback.MIPSOL:
|
||||
return {
|
||||
v.varName: self.model.cbGetSolution(v) for v in self.model.getVars()
|
||||
v.varName.encode(): self.model.cbGetSolution(v)
|
||||
for v in self.model.getVars()
|
||||
}
|
||||
else:
|
||||
raise Exception(
|
||||
@@ -276,7 +278,7 @@ class GurobiSolver(InternalSolver):
|
||||
)
|
||||
if self.model.solCount == 0:
|
||||
return None
|
||||
return {v.varName: v.x for v in self.model.getVars()}
|
||||
return {v.varName.encode(): v.x for v in self.model.getVars()}
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
@@ -584,7 +586,10 @@ class GurobiSolver(InternalSolver):
|
||||
assert self.model is not None
|
||||
gp_vars: List["gurobipy.Var"] = self.model.getVars()
|
||||
gp_constrs: List["gurobipy.Constr"] = self.model.getConstrs()
|
||||
var_names: List[str] = self.model.getAttr("varName", gp_vars)
|
||||
var_names: np.ndarray = np.array(
|
||||
self.model.getAttr("varName", gp_vars),
|
||||
dtype="S",
|
||||
)
|
||||
var_types: List[str] = self.model.getAttr("vtype", gp_vars)
|
||||
var_ubs: np.ndarray = np.array(
|
||||
self.model.getAttr("ub", gp_vars),
|
||||
@@ -599,7 +604,7 @@ class GurobiSolver(InternalSolver):
|
||||
dtype=float,
|
||||
)
|
||||
constr_names: List[str] = self.model.getAttr("constrName", gp_constrs)
|
||||
varname_to_var: Dict = {}
|
||||
varname_to_var: Dict[bytes, "gurobipy.Var"] = {}
|
||||
cname_to_constr: Dict = {}
|
||||
for (i, gp_var) in enumerate(gp_vars):
|
||||
assert var_names[i] not in varname_to_var, (
|
||||
|
||||
@@ -50,7 +50,7 @@ class MIPSolveStats:
|
||||
|
||||
@dataclass
|
||||
class Variables:
|
||||
names: Optional[List[str]] = None
|
||||
names: Optional[np.ndarray] = None
|
||||
basis_status: Optional[List[str]] = None
|
||||
lower_bounds: Optional[np.ndarray] = None
|
||||
obj_coeffs: Optional[np.ndarray] = None
|
||||
@@ -71,7 +71,7 @@ class Constraints:
|
||||
basis_status: Optional[List[str]] = None
|
||||
dual_values: Optional[np.ndarray] = None
|
||||
lazy: Optional[List[bool]] = None
|
||||
lhs: Optional[List[List[Tuple[str, float]]]] = None
|
||||
lhs: Optional[List[List[Tuple[bytes, float]]]] = None
|
||||
names: Optional[List[str]] = None
|
||||
rhs: Optional[np.ndarray] = None
|
||||
sa_rhs_down: Optional[np.ndarray] = None
|
||||
|
||||
@@ -34,8 +34,6 @@ from miplearn.types import (
|
||||
SolverParams,
|
||||
UserCutCallback,
|
||||
Solution,
|
||||
VariableName,
|
||||
Category,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -59,7 +57,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
self._is_warm_start_available: bool = False
|
||||
self._pyomo_solver: SolverFactory = solver_factory
|
||||
self._obj_sense: str = "min"
|
||||
self._varname_to_var: Dict[str, pe.Var] = {}
|
||||
self._varname_to_var: Dict[bytes, pe.Var] = {}
|
||||
self._cname_to_constr: Dict[str, pe.Constraint] = {}
|
||||
self._termination_condition: str = ""
|
||||
self._has_lp_solution = False
|
||||
@@ -166,7 +164,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
|
||||
names: List[str] = []
|
||||
rhs: List[float] = []
|
||||
lhs: List[List[Tuple[str, float]]] = []
|
||||
lhs: List[List[Tuple[bytes, float]]] = []
|
||||
senses: List[str] = []
|
||||
dual_values: List[float] = []
|
||||
slacks: List[float] = []
|
||||
@@ -199,18 +197,18 @@ class BasePyomoSolver(InternalSolver):
|
||||
if isinstance(term, MonomialTermExpression):
|
||||
lhsc.append(
|
||||
(
|
||||
term._args_[1].name,
|
||||
term._args_[1].name.encode(),
|
||||
float(term._args_[0]),
|
||||
)
|
||||
)
|
||||
elif isinstance(term, _GeneralVarData):
|
||||
lhsc.append((term.name, 1.0))
|
||||
lhsc.append((term.name.encode(), 1.0))
|
||||
else:
|
||||
raise Exception(
|
||||
f"Unknown term type: {term.__class__.__name__}"
|
||||
)
|
||||
elif isinstance(expr, _GeneralVarData):
|
||||
lhsc.append((expr.name, 1.0))
|
||||
lhsc.append((expr.name.encode(), 1.0))
|
||||
else:
|
||||
raise Exception(
|
||||
f"Unknown expression type: {expr.__class__.__name__}"
|
||||
@@ -264,7 +262,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
solution[f"{var}[{index}]"] = var[index].value
|
||||
solution[f"{var}[{index}]".encode()] = var[index].value
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
@@ -328,7 +326,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
values.append(v.value)
|
||||
|
||||
return Variables(
|
||||
names=_none_if_empty(names),
|
||||
names=_none_if_empty(np.array(names, dtype="S")),
|
||||
types=_none_if_empty(types),
|
||||
upper_bounds=_none_if_empty(np.array(upper_bounds, dtype=float)),
|
||||
lower_bounds=_none_if_empty(np.array(lower_bounds, dtype=float)),
|
||||
@@ -558,9 +556,9 @@ class BasePyomoSolver(InternalSolver):
|
||||
self._varname_to_var = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
for idx in var:
|
||||
varname = f"{var.name}[{idx}]"
|
||||
varname = f"{var.name}[{idx}]".encode()
|
||||
if idx is None:
|
||||
varname = var.name
|
||||
varname = var.name.encode()
|
||||
self._varname_to_var[varname] = var[idx]
|
||||
self._all_vars += [var[idx]]
|
||||
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
||||
|
||||
@@ -10,6 +10,7 @@ from miplearn.solvers.internal import InternalSolver, Variables, Constraints
|
||||
|
||||
inf = float("inf")
|
||||
|
||||
|
||||
# NOTE:
|
||||
# This file is in the main source folder, so that it can be called from Julia.
|
||||
|
||||
@@ -40,7 +41,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(
|
||||
solver.get_variables(),
|
||||
Variables(
|
||||
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
|
||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||
lower_bounds=np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
|
||||
upper_bounds=np.array([1.0, 1.0, 1.0, 1.0, 67.0]),
|
||||
types=["B", "B", "B", "B", "C"],
|
||||
@@ -56,11 +57,11 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
rhs=np.array([0.0]),
|
||||
lhs=[
|
||||
[
|
||||
("x[0]", 23.0),
|
||||
("x[1]", 26.0),
|
||||
("x[2]", 20.0),
|
||||
("x[3]", 18.0),
|
||||
("z", -1.0),
|
||||
(b"x[0]", 23.0),
|
||||
(b"x[1]", 26.0),
|
||||
(b"x[2]", 20.0),
|
||||
(b"x[3]", 18.0),
|
||||
(b"z", -1.0),
|
||||
],
|
||||
],
|
||||
senses=["="],
|
||||
@@ -83,7 +84,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
_filter_attrs(
|
||||
solver.get_variable_attrs(),
|
||||
Variables(
|
||||
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
|
||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||
basis_status=["U", "B", "U", "L", "U"],
|
||||
reduced_costs=np.array(
|
||||
[193.615385, 0.0, 187.230769, -23.692308, 13.538462]
|
||||
@@ -140,7 +141,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
_filter_attrs(
|
||||
solver.get_variable_attrs(),
|
||||
Variables(
|
||||
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
|
||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||
values=np.array([1.0, 0.0, 1.0, 1.0, 61.0]),
|
||||
),
|
||||
),
|
||||
@@ -161,7 +162,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
# Build new constraint and verify that it is violated
|
||||
cf = Constraints(
|
||||
names=["cut"],
|
||||
lhs=[[("x[0]", 1.0)]],
|
||||
lhs=[[(b"x[0]", 1.0)]],
|
||||
rhs=np.array([0.0]),
|
||||
senses=["<"],
|
||||
)
|
||||
@@ -178,14 +179,14 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
rhs=np.array([0.0, 0.0]),
|
||||
lhs=[
|
||||
[
|
||||
("x[0]", 23.0),
|
||||
("x[1]", 26.0),
|
||||
("x[2]", 20.0),
|
||||
("x[3]", 18.0),
|
||||
("z", -1.0),
|
||||
(b"x[0]", 23.0),
|
||||
(b"x[1]", 26.0),
|
||||
(b"x[2]", 20.0),
|
||||
(b"x[3]", 18.0),
|
||||
(b"z", -1.0),
|
||||
],
|
||||
[
|
||||
("x[0]", 1.0),
|
||||
(b"x[0]", 1.0),
|
||||
],
|
||||
],
|
||||
senses=["=", "<"],
|
||||
@@ -208,16 +209,16 @@ def run_warm_start_tests(solver: InternalSolver) -> None:
|
||||
instance = solver.build_test_instance_knapsack()
|
||||
model = instance.to_model()
|
||||
solver.set_instance(instance, model)
|
||||
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
||||
solver.set_warm_start({b"x[0]": 1.0, b"x[1]": 0.0, b"x[2]": 0.0, b"x[3]": 1.0})
|
||||
stats = solver.solve(tee=True)
|
||||
if stats.mip_warm_start_value is not None:
|
||||
assert_equals(stats.mip_warm_start_value, 725.0)
|
||||
|
||||
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
|
||||
solver.set_warm_start({b"x[0]": 1.0, b"x[1]": 1.0, b"x[2]": 1.0, b"x[3]": 1.0})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats.mip_warm_start_value is None
|
||||
|
||||
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
||||
solver.fix({b"x[0]": 1.0, b"x[1]": 0.0, b"x[2]": 0.0, b"x[3]": 1.0})
|
||||
stats = solver.solve(tee=True)
|
||||
assert_equals(stats.mip_lower_bound, 725.0)
|
||||
assert_equals(stats.mip_upper_bound, 725.0)
|
||||
@@ -257,15 +258,15 @@ def run_lazy_cb_tests(solver: InternalSolver) -> None:
|
||||
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
|
||||
relsol = cb_solver.get_solution()
|
||||
assert relsol is not None
|
||||
assert relsol["x[0]"] is not None
|
||||
if relsol["x[0]"] > 0:
|
||||
assert relsol[b"x[0]"] is not None
|
||||
if relsol[b"x[0]"] > 0:
|
||||
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
|
||||
|
||||
solver.set_instance(instance, model)
|
||||
solver.solve(lazy_cb=lazy_cb)
|
||||
solution = solver.get_solution()
|
||||
assert solution is not None
|
||||
assert_equals(solution["x[0]"], 0.0)
|
||||
assert_equals(solution[b"x[0]"], 0.0)
|
||||
|
||||
|
||||
def _equals_preprocess(obj: Any) -> Any:
|
||||
@@ -274,7 +275,7 @@ def _equals_preprocess(obj: Any) -> Any:
|
||||
return np.round(obj, decimals=6).tolist()
|
||||
else:
|
||||
return obj.tolist()
|
||||
elif isinstance(obj, (int, str, bool, np.bool_)):
|
||||
elif isinstance(obj, (int, str, bool, np.bool_, np.bytes_, bytes)):
|
||||
return obj
|
||||
elif isinstance(obj, float):
|
||||
return round(obj, 6)
|
||||
|
||||
@@ -15,8 +15,7 @@ IterationCallback = Callable[[], bool]
|
||||
LazyCallback = Callable[[Any, Any], None]
|
||||
SolverParams = Dict[str, Any]
|
||||
UserCutCallback = Callable[["InternalSolver", Any], None]
|
||||
VariableName = str
|
||||
Solution = Dict[VariableName, Optional[float]]
|
||||
Solution = Dict[bytes, Optional[float]]
|
||||
|
||||
LearningSolveStats = TypedDict(
|
||||
"LearningSolveStats",
|
||||
|
||||
Reference in New Issue
Block a user