mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement InstanceFeaturesExtractor and ObjectiveValueExtractor
This commit is contained in:
@@ -12,6 +12,8 @@ from .components.branching import BranchPriorityComponent
|
|||||||
from .extractors import (UserFeaturesExtractor,
|
from .extractors import (UserFeaturesExtractor,
|
||||||
SolutionExtractor,
|
SolutionExtractor,
|
||||||
CombinedExtractor,
|
CombinedExtractor,
|
||||||
|
InstanceFeaturesExtractor,
|
||||||
|
ObjectiveValueExtractor,
|
||||||
)
|
)
|
||||||
from .benchmark import BenchmarkRunner
|
from .benchmark import BenchmarkRunner
|
||||||
from .instance import Instance
|
from .instance import Instance
|
||||||
|
|||||||
@@ -103,3 +103,28 @@ class CombinedExtractor(Extractor):
|
|||||||
def extract(self, instances, models):
|
def extract(self, instances, models):
|
||||||
return self.merge([ex.extract(instances, models)
|
return self.merge([ex.extract(instances, models)
|
||||||
for ex in self.extractors])
|
for ex in self.extractors])
|
||||||
|
|
||||||
|
|
||||||
|
class InstanceFeaturesExtractor(Extractor):
|
||||||
|
def extract(self, instances, models=None):
|
||||||
|
return np.vstack([
|
||||||
|
np.hstack([
|
||||||
|
instance.get_instance_features(),
|
||||||
|
instance.lp_value,
|
||||||
|
])
|
||||||
|
for instance in instances
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
class ObjectiveValueExtractor(Extractor):
|
||||||
|
def __init__(self, kind="lp"):
|
||||||
|
assert kind in ["lower bound", "upper bound", "lp"]
|
||||||
|
self.kind = kind
|
||||||
|
|
||||||
|
def extract(self, instances, models=None):
|
||||||
|
if self.kind == "lower bound":
|
||||||
|
return np.array([[instance.lower_bound] for instance in instances])
|
||||||
|
if self.kind == "upper bound":
|
||||||
|
return np.array([[instance.upper_bound] for instance in instances])
|
||||||
|
if self.kind == "lp":
|
||||||
|
return np.array([[instance.lp_value] for instance in instances])
|
||||||
|
|||||||
@@ -7,13 +7,14 @@ from miplearn import (LearningSolver,
|
|||||||
UserFeaturesExtractor,
|
UserFeaturesExtractor,
|
||||||
SolutionExtractor,
|
SolutionExtractor,
|
||||||
CombinedExtractor,
|
CombinedExtractor,
|
||||||
|
InstanceFeaturesExtractor
|
||||||
)
|
)
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
|
|
||||||
|
|
||||||
def _get_instances():
|
def _get_instances():
|
||||||
return [
|
instances = [
|
||||||
KnapsackInstance(weights=[1., 2., 3.],
|
KnapsackInstance(weights=[1., 2., 3.],
|
||||||
prices=[10., 20., 30.],
|
prices=[10., 20., 30.],
|
||||||
capacity=2.5,
|
capacity=2.5,
|
||||||
@@ -23,10 +24,15 @@ def _get_instances():
|
|||||||
capacity=4.5,
|
capacity=4.5,
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
models = [instance.to_model() for instance in instances]
|
||||||
|
solver = LearningSolver()
|
||||||
|
for (i, instance) in enumerate(instances):
|
||||||
|
solver.solve(instances[i], models[i])
|
||||||
|
return instances, models
|
||||||
|
|
||||||
|
|
||||||
def test_user_features():
|
def test_user_features_extractor():
|
||||||
instances = _get_instances()
|
instances, models = _get_instances()
|
||||||
extractor = UserFeaturesExtractor()
|
extractor = UserFeaturesExtractor()
|
||||||
features = extractor.extract(instances)
|
features = extractor.extract(instances)
|
||||||
assert isinstance(features, dict)
|
assert isinstance(features, dict)
|
||||||
@@ -36,12 +42,7 @@ def test_user_features():
|
|||||||
|
|
||||||
|
|
||||||
def test_solution_extractor():
|
def test_solution_extractor():
|
||||||
instances = _get_instances()
|
instances, models = _get_instances()
|
||||||
models = [instance.to_model() for instance in instances]
|
|
||||||
solver = LearningSolver()
|
|
||||||
for (i, instance) in enumerate(instances):
|
|
||||||
solver.solve(instances[i], models[i])
|
|
||||||
|
|
||||||
features = SolutionExtractor().extract(instances, models)
|
features = SolutionExtractor().extract(instances, models)
|
||||||
assert isinstance(features, dict)
|
assert isinstance(features, dict)
|
||||||
assert "default" in features.keys()
|
assert "default" in features.keys()
|
||||||
@@ -58,12 +59,7 @@ def test_solution_extractor():
|
|||||||
|
|
||||||
|
|
||||||
def test_combined_extractor():
|
def test_combined_extractor():
|
||||||
instances = _get_instances()
|
instances, models = _get_instances()
|
||||||
models = [instance.to_model() for instance in instances]
|
|
||||||
solver = LearningSolver()
|
|
||||||
for (i, instance) in enumerate(instances):
|
|
||||||
solver.solve(instances[i], models[i])
|
|
||||||
|
|
||||||
extractor = CombinedExtractor(extractors=[UserFeaturesExtractor(),
|
extractor = CombinedExtractor(extractors=[UserFeaturesExtractor(),
|
||||||
SolutionExtractor()])
|
SolutionExtractor()])
|
||||||
features = extractor.extract(instances, models)
|
features = extractor.extract(instances, models)
|
||||||
@@ -72,3 +68,8 @@ def test_combined_extractor():
|
|||||||
assert isinstance(features["default"], np.ndarray)
|
assert isinstance(features["default"], np.ndarray)
|
||||||
assert features["default"].shape == (6, 6)
|
assert features["default"].shape == (6, 6)
|
||||||
|
|
||||||
|
|
||||||
|
def test_instance_features_extractor():
|
||||||
|
instances, models = _get_instances()
|
||||||
|
features = InstanceFeaturesExtractor().extract(instances)
|
||||||
|
assert features.shape == (2,3)
|
||||||
Reference in New Issue
Block a user