mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
DropRedundant: Collect data from multiple runs
This commit is contained in:
@@ -50,11 +50,9 @@ class DropRedundantInequalitiesStep(Component):
|
||||
self.current_iteration = 0
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
cids = solver.internal_solver.get_constraint_ids()
|
||||
x, constraints = self.x(
|
||||
[instance],
|
||||
constraint_ids=cids,
|
||||
return_constraints=True,
|
||||
x, constraints = self._x_test(
|
||||
instance,
|
||||
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
@@ -84,11 +82,16 @@ class DropRedundantInequalitiesStep(Component):
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
instance.slacks = solver.internal_solver.get_inequality_slacks()
|
||||
stats["DropRedundant: Kept"] = self.total_kept
|
||||
stats["DropRedundant: Dropped"] = self.total_dropped
|
||||
stats["DropRedundant: Restored"] = self.total_restored
|
||||
stats["DropRedundant: Iterations"] = self.total_iterations
|
||||
if "slacks" not in training_data.keys():
|
||||
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
||||
stats.update(
|
||||
{
|
||||
"DropRedundant: Kept": self.total_kept,
|
||||
"DropRedundant: Dropped": self.total_dropped,
|
||||
"DropRedundant: Restored": self.total_restored,
|
||||
"DropRedundant: Iterations": self.total_iterations,
|
||||
}
|
||||
)
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
@@ -100,33 +103,45 @@ class DropRedundantInequalitiesStep(Component):
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def x(self, instances, constraint_ids=None, return_constraints=False):
|
||||
def _x_test(self, instance, constraint_ids):
|
||||
x = {}
|
||||
constraints = {}
|
||||
cids = constraint_ids
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
for category in x.keys():
|
||||
x[category] = np.array(x[category])
|
||||
return x, constraints
|
||||
|
||||
def _x_train(self, instances):
|
||||
x = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:drop_ineq:x)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
if constraint_ids is not None:
|
||||
cids = constraint_ids
|
||||
else:
|
||||
cids = instance.slacks.keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
for training_data in instance.training_data:
|
||||
cids = training_data["slacks"].keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
for category in x.keys():
|
||||
x[category] = np.array(x[category])
|
||||
if return_constraints:
|
||||
return x, constraints
|
||||
else:
|
||||
return x
|
||||
return x
|
||||
|
||||
def x(self, instances):
|
||||
return self._x_train(instances)
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
@@ -135,16 +150,17 @@ class DropRedundantInequalitiesStep(Component):
|
||||
desc="Extract (rlx:drop_ineq:y)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
for (cid, slack) in instance.slacks.items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
for training_data in instance.training_data:
|
||||
for (cid, slack) in training_data["slacks"].items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
|
||||
@@ -5,9 +5,18 @@
|
||||
import numpy as np
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import LearningSolver, Instance, InternalSolver
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver,
|
||||
GurobiSolver,
|
||||
)
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.relaxation import DropRedundantInequalitiesStep
|
||||
from miplearn.components.relaxation import (
|
||||
DropRedundantInequalitiesStep,
|
||||
RelaxIntegralityStep,
|
||||
)
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
|
||||
|
||||
def _setup():
|
||||
@@ -115,14 +124,14 @@ def test_drop_redundant():
|
||||
)
|
||||
|
||||
# LearningSolver calls after_solve
|
||||
component.after_solve(solver, instance, None, {}, {})
|
||||
training_data = {}
|
||||
component.after_solve(solver, instance, None, {}, training_data)
|
||||
|
||||
# Should query slack for all inequalities
|
||||
internal.get_inequality_slacks.assert_called_once()
|
||||
|
||||
# Should store constraint slacks in instance object
|
||||
assert hasattr(instance, "slacks")
|
||||
assert instance.slacks == {
|
||||
assert training_data["slacks"] == {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
@@ -130,7 +139,7 @@ def test_drop_redundant():
|
||||
}
|
||||
|
||||
|
||||
def test_drop_redundant_with_check_dropped():
|
||||
def test_drop_redundant_with_check_feasibility():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = DropRedundantInequalitiesStep(
|
||||
@@ -195,12 +204,16 @@ def test_x_y_fit_predict_evaluate():
|
||||
)
|
||||
|
||||
# First mock instance
|
||||
instances[0].slacks = {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
instances[0].training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
}
|
||||
]
|
||||
instances[0].get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
@@ -218,12 +231,16 @@ def test_x_y_fit_predict_evaluate():
|
||||
)
|
||||
|
||||
# Second mock instance
|
||||
instances[1].slacks = {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
instances[1].training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
}
|
||||
]
|
||||
instances[1].get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
@@ -283,3 +300,71 @@ def test_x_y_fit_predict_evaluate():
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
def test_x_multiple_solves():
|
||||
instance = Mock(spec=Instance)
|
||||
instance.training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
},
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.00,
|
||||
"c3": 1.00,
|
||||
"c4": 0.0,
|
||||
}
|
||||
},
|
||||
]
|
||||
instance.get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instance.get_constraint_features = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c2": np.array([1.0, 0.0]),
|
||||
"c3": np.array([0.5, 0.5]),
|
||||
"c4": np.array([1.0]),
|
||||
}[cid]
|
||||
)
|
||||
|
||||
expected_x = {
|
||||
"type-a": np.array(
|
||||
[
|
||||
[1.0, 0.0],
|
||||
[0.5, 0.5],
|
||||
[1.0, 0.0],
|
||||
[0.5, 0.5],
|
||||
]
|
||||
),
|
||||
"type-b": np.array(
|
||||
[
|
||||
[1.0],
|
||||
[1.0],
|
||||
]
|
||||
),
|
||||
}
|
||||
|
||||
expected_y = {
|
||||
"type-a": np.array([[1], [0], [0], [1]]),
|
||||
"type-b": np.array([[1], [0]]),
|
||||
}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
component = DropRedundantInequalitiesStep()
|
||||
actual_x = component.x([instance])
|
||||
actual_y = component.y([instance])
|
||||
print(actual_x)
|
||||
for category in ["type-a", "type-b"]:
|
||||
np.testing.assert_array_equal(actual_x[category], expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y[category], expected_y[category])
|
||||
Reference in New Issue
Block a user