DropRedundant: Collect data from multiple runs

This commit is contained in:
2021-01-14 11:27:47 -06:00
parent e12a896504
commit 7e4b1d77a3
3 changed files with 157 additions and 56 deletions

View File

@@ -50,11 +50,9 @@ class DropRedundantInequalitiesStep(Component):
self.current_iteration = 0
logger.info("Predicting redundant LP constraints...")
cids = solver.internal_solver.get_constraint_ids()
x, constraints = self.x(
[instance],
constraint_ids=cids,
return_constraints=True,
x, constraints = self._x_test(
instance,
constraint_ids=solver.internal_solver.get_constraint_ids(),
)
y = self.predict(x)
@@ -84,11 +82,16 @@ class DropRedundantInequalitiesStep(Component):
stats,
training_data,
):
instance.slacks = solver.internal_solver.get_inequality_slacks()
stats["DropRedundant: Kept"] = self.total_kept
stats["DropRedundant: Dropped"] = self.total_dropped
stats["DropRedundant: Restored"] = self.total_restored
stats["DropRedundant: Iterations"] = self.total_iterations
if "slacks" not in training_data.keys():
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
stats.update(
{
"DropRedundant: Kept": self.total_kept,
"DropRedundant: Dropped": self.total_dropped,
"DropRedundant: Restored": self.total_restored,
"DropRedundant: Iterations": self.total_iterations,
}
)
def fit(self, training_instances):
logger.debug("Extracting x and y...")
@@ -100,33 +103,45 @@ class DropRedundantInequalitiesStep(Component):
self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category])
def x(self, instances, constraint_ids=None, return_constraints=False):
def _x_test(self, instance, constraint_ids):
x = {}
constraints = {}
cids = constraint_ids
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
constraints[category] = []
x[category] += [instance.get_constraint_features(cid)]
constraints[category] += [cid]
for category in x.keys():
x[category] = np.array(x[category])
return x, constraints
def _x_train(self, instances):
x = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (rlx:drop_ineq:x)",
disable=len(instances) < 5,
):
if constraint_ids is not None:
cids = constraint_ids
else:
cids = instance.slacks.keys()
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
constraints[category] = []
x[category] += [instance.get_constraint_features(cid)]
constraints[category] += [cid]
for training_data in instance.training_data:
cids = training_data["slacks"].keys()
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
x[category] += [instance.get_constraint_features(cid)]
for category in x.keys():
x[category] = np.array(x[category])
if return_constraints:
return x, constraints
else:
return x
return x
def x(self, instances):
return self._x_train(instances)
def y(self, instances):
y = {}
@@ -135,16 +150,17 @@ class DropRedundantInequalitiesStep(Component):
desc="Extract (rlx:drop_ineq:y)",
disable=len(instances) < 5,
):
for (cid, slack) in instance.slacks.items():
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in y:
y[category] = []
if slack > self.slack_tolerance:
y[category] += [[1]]
else:
y[category] += [[0]]
for training_data in instance.training_data:
for (cid, slack) in training_data["slacks"].items():
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in y:
y[category] = []
if slack > self.slack_tolerance:
y[category] += [[1]]
else:
y[category] += [[0]]
return y
def predict(self, x):