MaxCut: add `w_jitter` parameter to control edge weight randomization

dev
Alinson S. Xavier 4 months ago
parent daa801b5e9
commit 7ed213d4ce

@ -28,21 +28,21 @@ class MaxCutGenerator:
""" """
Random instance generator for the Maximum Cut Problem. Random instance generator for the Maximum Cut Problem.
The generator operates in two modes. When `fix_graph=True`, a single random The generator operates in two modes. When `fix_graph=True`, a single random Erdős-Rényi graph $G_{n,
Erdős-Rényi graph $G_{n,p}$ is generated during initialization, with parameters $n$ p}$ is generated during initialization, with parameters $n$ and $p$ drawn from their respective probability
and $p$ drawn from their respective probability distributions. For each instance, distributions, and each edge is assigned a random weight drawn from the set {-1, 1}, with equal probability. To
only edge weights are randomly sampled from the set {1, -1}, while the graph generate each instance variation, the generator randomly flips the sign of each edge weight with probability
structure remains fixed. `w_jitter`. The graph remains the same across all variations.
When `fix_graph=False`, both the graph structure and edge weights are randomly When `fix_graph=False`, a new random graph is generated for each instance, with random {-1,1} edge weights.
generated for each instance.
""" """
def __init__( def __init__(
self, self,
n: rv_frozen, n: rv_frozen,
p: rv_frozen, p: rv_frozen,
fix_graph: bool, w_jitter: float = 0.0,
fix_graph: bool = False,
): ):
""" """
Initialize the problem generator. Initialize the problem generator.
@ -53,6 +53,8 @@ class MaxCutGenerator:
Probability distribution for the number of nodes. Probability distribution for the number of nodes.
p: rv_continuous p: rv_continuous
Probability distribution for the graph density. Probability distribution for the graph density.
w_jitter: float
Probability that each edge weight flips from -1 to 1. Only applicable if fix_graph is True.
fix_graph: bool fix_graph: bool
Controls graph generation for instances. If false, a new random graph is Controls graph generation for instances. If false, a new random graph is
generated for each instance. If true, the same graph is reused across instances. generated for each instance. If true, the same graph is reused across instances.
@ -61,19 +63,24 @@ class MaxCutGenerator:
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution" assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
self.n = n self.n = n
self.p = p self.p = p
self.w_jitter = w_jitter
self.fix_graph = fix_graph self.fix_graph = fix_graph
self.graph = None self.graph = None
self.weights = None
if fix_graph: if fix_graph:
self.graph = self._generate_graph() self.graph = self._generate_graph()
self.weights = self._generate_weights(self.graph)
def generate(self, n_samples: int) -> List[MaxCutData]: def generate(self, n_samples: int) -> List[MaxCutData]:
def _sample() -> MaxCutData: def _sample() -> MaxCutData:
if self.graph is not None: if self.graph is not None:
graph = self.graph graph = self.graph
weights = self.weights
jitter = self._generate_jitter(graph)
weights = weights * jitter
else: else:
graph = self._generate_graph() graph = self._generate_graph()
m = graph.number_of_edges() weights = self._generate_weights(graph)
weights = np.random.randint(2, size=(m,)) * 2 - 1
return MaxCutData(graph, weights) return MaxCutData(graph, weights)
return [_sample() for _ in range(n_samples)] return [_sample() for _ in range(n_samples)]
@ -81,6 +88,15 @@ class MaxCutGenerator:
def _generate_graph(self) -> Graph: def _generate_graph(self) -> Graph:
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs()) return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
@staticmethod
def _generate_weights(graph: Graph) -> np.ndarray:
m = graph.number_of_edges()
return np.random.randint(2, size=(m,)) * 2 - 1
def _generate_jitter(self, graph: Graph) -> np.ndarray:
m = graph.number_of_edges()
return (np.random.rand(m) >= self.w_jitter).astype(int) * 2 - 1
def build_maxcut_model_gurobipy( def build_maxcut_model_gurobipy(
data: Union[str, MaxCutData], data: Union[str, MaxCutData],

@ -52,29 +52,23 @@ def test_maxcut_generator_fixed() -> None:
n=randint(low=5, high=6), n=randint(low=5, high=6),
p=uniform(loc=0.5, scale=0.0), p=uniform(loc=0.5, scale=0.0),
fix_graph=True, fix_graph=True,
w_jitter=0.25,
) )
data = gen.generate(3) data = gen.generate(3)
assert len(data) == 3 assert len(data) == 3
assert list(data[0].graph.nodes()) == [0, 1, 2, 3, 4] for i in range(3):
assert list(data[0].graph.edges()) == [ assert list(data[i].graph.nodes()) == [0, 1, 2, 3, 4]
(0, 2), assert list(data[i].graph.edges()) == [
(0, 3), (0, 2),
(0, 4), (0, 3),
(2, 3), (0, 4),
(2, 4), (2, 3),
(3, 4), (2, 4),
] (3, 4),
assert data[0].weights.tolist() == [-1, 1, -1, -1, -1, 1] ]
assert list(data[1].graph.nodes()) == [0, 1, 2, 3, 4] assert data[0].weights.tolist() == [-1, -1, 1, 1, -1, 1]
assert list(data[1].graph.edges()) == [ assert data[1].weights.tolist() == [-1, -1, -1, -1, 1, -1]
(0, 2), assert data[2].weights.tolist() == [1, 1, -1, -1, -1, 1]
(0, 3),
(0, 4),
(2, 3),
(2, 4),
(3, 4),
]
assert data[1].weights.tolist() == [-1, -1, -1, 1, -1, -1]
def test_maxcut_model(): def test_maxcut_model():

Loading…
Cancel
Save