Benchmark: Move relative statistics to benchmark script

master
Alinson S. Xavier 5 years ago
parent 96a57efd25
commit 872ef0eb06
No known key found for this signature in database
GPG Key ID: A796166E4E218E02

@ -31,6 +31,9 @@ import glob
from docopt import docopt
from numpy import median
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from miplearn import (
LearningSolver,
@ -132,16 +135,19 @@ def test_ml():
def charts():
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid")
sns.set_palette("Blues_r")
benchmark = BenchmarkRunner({})
benchmark.load_results(f"{basepath}/benchmark_baseline.csv")
benchmark.load_results(f"{basepath}/benchmark_ml.csv")
results = benchmark.raw_results()
results["Gap (%)"] = results["Gap"] * 100.0
csv_files = [
f"{basepath}/benchmark_baseline.csv",
f"{basepath}/benchmark_ml.csv",
]
results = pd.concat(map(pd.read_csv, csv_files))
groups = results.groupby("Instance")
best_lower_bound = groups["Lower bound"].transform("max")
best_upper_bound = groups["Upper bound"].transform("min")
results["Relative lower bound"] = results["Lower bound"] / best_lower_bound
results["Relative upper bound"] = results["Upper bound"] / best_upper_bound
sense = results.loc[0, "Sense"]
if (sense == "min").any():
@ -187,7 +193,7 @@ def charts():
ax2.set_ylim(-0.5, 5.5)
sns.stripplot(
x="Solver",
y="Gap (%)",
y="Gap",
jitter=0.25,
data=results[results["Solver"] != "ml-heuristic"],
ax=ax2,

@ -94,25 +94,6 @@ class BenchmarkRunner:
result["Mode"] = solver.mode
self.results = self.results.append(pd.DataFrame([result]))
# Compute relative statistics
groups = self.results.groupby("Instance")
best_lower_bound = groups["Lower bound"].transform("max")
best_upper_bound = groups["Upper bound"].transform("min")
best_gap = groups["Gap"].transform("min")
best_nodes = np.maximum(1, groups["Nodes"].transform("min"))
best_wallclock_time = groups["Wallclock time"].transform("min")
self.results["Relative lower bound"] = (
self.results["Lower bound"] / best_lower_bound
)
self.results["Relative upper bound"] = (
self.results["Upper bound"] / best_upper_bound
)
self.results["Relative wallclock time"] = (
self.results["Wallclock time"] / best_wallclock_time
)
self.results["Relative Gap"] = self.results["Gap"] / best_gap
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
def _silence_miplearn_logger(self):
miplearn_logger = logging.getLogger("miplearn")
self.prev_log_level = miplearn_logger.getEffectiveLevel()

@ -27,11 +27,11 @@ def test_benchmark():
benchmark = BenchmarkRunner(test_solvers)
benchmark.fit(train_instances)
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
assert benchmark.raw_results().values.shape == (12, 19)
assert benchmark.raw_results().values.shape == (12, 14)
benchmark.save_results("/tmp/benchmark.csv")
assert os.path.isfile("/tmp/benchmark.csv")
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_results("/tmp/benchmark.csv")
assert benchmark.raw_results().values.shape == (12, 19)
assert benchmark.raw_results().values.shape == (12, 14)

Loading…
Cancel
Save