|
|
|
@ -31,6 +31,9 @@ import glob
|
|
|
|
|
from docopt import docopt
|
|
|
|
|
from numpy import median
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
from miplearn import (
|
|
|
|
|
LearningSolver,
|
|
|
|
@ -132,16 +135,19 @@ def test_ml():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def charts():
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
sns.set_style("whitegrid")
|
|
|
|
|
sns.set_palette("Blues_r")
|
|
|
|
|
benchmark = BenchmarkRunner({})
|
|
|
|
|
benchmark.load_results(f"{basepath}/benchmark_baseline.csv")
|
|
|
|
|
benchmark.load_results(f"{basepath}/benchmark_ml.csv")
|
|
|
|
|
results = benchmark.raw_results()
|
|
|
|
|
results["Gap (%)"] = results["Gap"] * 100.0
|
|
|
|
|
|
|
|
|
|
csv_files = [
|
|
|
|
|
f"{basepath}/benchmark_baseline.csv",
|
|
|
|
|
f"{basepath}/benchmark_ml.csv",
|
|
|
|
|
]
|
|
|
|
|
results = pd.concat(map(pd.read_csv, csv_files))
|
|
|
|
|
groups = results.groupby("Instance")
|
|
|
|
|
best_lower_bound = groups["Lower bound"].transform("max")
|
|
|
|
|
best_upper_bound = groups["Upper bound"].transform("min")
|
|
|
|
|
results["Relative lower bound"] = results["Lower bound"] / best_lower_bound
|
|
|
|
|
results["Relative upper bound"] = results["Upper bound"] / best_upper_bound
|
|
|
|
|
|
|
|
|
|
sense = results.loc[0, "Sense"]
|
|
|
|
|
if (sense == "min").any():
|
|
|
|
@ -187,7 +193,7 @@ def charts():
|
|
|
|
|
ax2.set_ylim(-0.5, 5.5)
|
|
|
|
|
sns.stripplot(
|
|
|
|
|
x="Solver",
|
|
|
|
|
y="Gap (%)",
|
|
|
|
|
y="Gap",
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Solver"] != "ml-heuristic"],
|
|
|
|
|
ax=ax2,
|
|
|
|
|