mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement MemorizingCutsComponent; STAB: switch to edge formulation
This commit is contained in:
0
miplearn/components/cuts/__init__.py
Normal file
0
miplearn/components/cuts/__init__.py
Normal file
105
miplearn/components/cuts/mem.py
Normal file
105
miplearn/components/cuts/mem.py
Normal file
@@ -0,0 +1,105 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, Hashable, Union
|
||||
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.h5 import H5File
|
||||
from miplearn.solvers.abstract import AbstractModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class _BaseMemorizingConstrComponent:
|
||||
def __init__(self, clf: Any, extractor: FeaturesExtractor, field: str) -> None:
|
||||
self.clf = clf
|
||||
self.extractor = extractor
|
||||
self.constrs_: List[Hashable] = []
|
||||
self.n_features_: int = 0
|
||||
self.n_targets_: int = 0
|
||||
self.field = field
|
||||
|
||||
def fit(
|
||||
self,
|
||||
train_h5: List[str],
|
||||
) -> None:
|
||||
logger.info("Reading training data...")
|
||||
n_samples = len(train_h5)
|
||||
x, y, constrs, n_features = [], [], [], None
|
||||
constr_to_idx: Dict[Hashable, int] = {}
|
||||
for h5_filename in train_h5:
|
||||
with H5File(h5_filename, "r") as h5:
|
||||
# Store constraints
|
||||
sample_constrs_str = h5.get_scalar(self.field)
|
||||
assert sample_constrs_str is not None
|
||||
assert isinstance(sample_constrs_str, str)
|
||||
sample_constrs = eval(sample_constrs_str)
|
||||
assert isinstance(sample_constrs, list)
|
||||
y_sample = []
|
||||
for c in sample_constrs:
|
||||
if c not in constr_to_idx:
|
||||
constr_to_idx[c] = len(constr_to_idx)
|
||||
constrs.append(c)
|
||||
y_sample.append(constr_to_idx[c])
|
||||
y.append(y_sample)
|
||||
|
||||
# Extract features
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert len(x_sample.shape) == 1
|
||||
if n_features is None:
|
||||
n_features = len(x_sample)
|
||||
else:
|
||||
assert len(x_sample) == n_features
|
||||
x.append(x_sample)
|
||||
logger.info("Constructing matrices...")
|
||||
assert n_features is not None
|
||||
self.n_features_ = n_features
|
||||
self.constrs_ = constrs
|
||||
self.n_targets_ = len(constr_to_idx)
|
||||
x_np = np.vstack(x)
|
||||
assert x_np.shape == (n_samples, n_features)
|
||||
y_np = MultiLabelBinarizer().fit_transform(y)
|
||||
assert y_np.shape == (n_samples, self.n_targets_)
|
||||
logger.info(
|
||||
f"Dataset has {n_samples:,d} samples, "
|
||||
f"{n_features:,d} features and {self.n_targets_:,d} targets"
|
||||
)
|
||||
logger.info("Training classifier...")
|
||||
self.clf.fit(x_np, y_np)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
msg: str,
|
||||
test_h5: str,
|
||||
) -> List[Hashable]:
|
||||
with H5File(test_h5, "r") as h5:
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert x_sample.shape == (self.n_features_,)
|
||||
x_sample = x_sample.reshape(1, -1)
|
||||
logger.info(msg)
|
||||
y = self.clf.predict(x_sample)
|
||||
assert y.shape == (1, self.n_targets_)
|
||||
y = y.reshape(-1)
|
||||
return [self.constrs_[i] for (i, yi) in enumerate(y) if yi > 0.5]
|
||||
|
||||
|
||||
class MemorizingCutsComponent(_BaseMemorizingConstrComponent):
|
||||
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
||||
super().__init__(clf, extractor, "mip_cuts")
|
||||
|
||||
def before_mip(
|
||||
self,
|
||||
test_h5: str,
|
||||
model: AbstractModel,
|
||||
stats: Dict[str, Any],
|
||||
) -> None:
|
||||
if model.cuts_enforce is None:
|
||||
return
|
||||
assert self.constrs_ is not None
|
||||
model.cuts_aot_ = self.predict("Predicting cutting planes...", test_h5)
|
||||
stats["Cuts: AOT"] = len(model.cuts_aot_)
|
||||
@@ -1,74 +1,22 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, Hashable
|
||||
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
|
||||
from miplearn.components.cuts.mem import (
|
||||
_BaseMemorizingConstrComponent,
|
||||
)
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.h5 import H5File
|
||||
from miplearn.solvers.abstract import AbstractModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MemorizingLazyConstrComponent:
|
||||
class MemorizingLazyComponent(_BaseMemorizingConstrComponent):
|
||||
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
||||
self.clf = clf
|
||||
self.extractor = extractor
|
||||
self.constrs_: List[Hashable] = []
|
||||
self.n_features_: int = 0
|
||||
self.n_targets_: int = 0
|
||||
|
||||
def fit(self, train_h5: List[str]) -> None:
|
||||
logger.info("Reading training data...")
|
||||
n_samples = len(train_h5)
|
||||
x, y, constrs, n_features = [], [], [], None
|
||||
constr_to_idx: Dict[Hashable, int] = {}
|
||||
for h5_filename in train_h5:
|
||||
with H5File(h5_filename, "r") as h5:
|
||||
|
||||
# Store lazy constraints
|
||||
sample_constrs_str = h5.get_scalar("mip_lazy")
|
||||
assert sample_constrs_str is not None
|
||||
assert isinstance(sample_constrs_str, str)
|
||||
sample_constrs = eval(sample_constrs_str)
|
||||
assert isinstance(sample_constrs, list)
|
||||
y_sample = []
|
||||
for c in sample_constrs:
|
||||
if c not in constr_to_idx:
|
||||
constr_to_idx[c] = len(constr_to_idx)
|
||||
constrs.append(c)
|
||||
y_sample.append(constr_to_idx[c])
|
||||
y.append(y_sample)
|
||||
|
||||
# Extract features
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert len(x_sample.shape) == 1
|
||||
if n_features is None:
|
||||
n_features = len(x_sample)
|
||||
else:
|
||||
assert len(x_sample) == n_features
|
||||
x.append(x_sample)
|
||||
|
||||
logger.info("Constructing matrices...")
|
||||
assert n_features is not None
|
||||
self.n_features_ = n_features
|
||||
self.constrs_ = constrs
|
||||
self.n_targets_ = len(constr_to_idx)
|
||||
x_np = np.vstack(x)
|
||||
assert x_np.shape == (n_samples, n_features)
|
||||
y_np = MultiLabelBinarizer().fit_transform(y)
|
||||
assert y_np.shape == (n_samples, self.n_targets_)
|
||||
logger.info(
|
||||
f"Dataset has {n_samples:,d} samples, "
|
||||
f"{n_features:,d} features and {self.n_targets_:,d} targets"
|
||||
)
|
||||
|
||||
logger.info("Training classifier...")
|
||||
self.clf.fit(x_np, y_np)
|
||||
super().__init__(clf, extractor, "mip_lazy")
|
||||
|
||||
def before_mip(
|
||||
self,
|
||||
@@ -78,23 +26,8 @@ class MemorizingLazyConstrComponent:
|
||||
) -> None:
|
||||
if model.lazy_enforce is None:
|
||||
return
|
||||
|
||||
assert self.constrs_ is not None
|
||||
|
||||
# Read features
|
||||
with H5File(test_h5, "r") as h5:
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert x_sample.shape == (self.n_features_,)
|
||||
x_sample = x_sample.reshape(1, -1)
|
||||
|
||||
# Predict violated constraints
|
||||
logger.info("Predicting violated lazy constraints...")
|
||||
y = self.clf.predict(x_sample)
|
||||
assert y.shape == (1, self.n_targets_)
|
||||
y = y.reshape(-1)
|
||||
|
||||
# Enforce constraints
|
||||
violations = [self.constrs_[i] for (i, yi) in enumerate(y) if yi > 0.5]
|
||||
violations = self.predict("Predicting violated lazy constraints...", test_h5)
|
||||
logger.info(f"Enforcing {len(violations)} constraints ahead-of-time...")
|
||||
model.lazy_enforce(model, violations)
|
||||
stats["Lazy Constraints: AOT"] = len(violations)
|
||||
|
||||
Reference in New Issue
Block a user