mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement MemorizingCutsComponent; STAB: switch to edge formulation
This commit is contained in:
@@ -108,7 +108,11 @@
|
|||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
"id": "f14e560c-ef9f-4c48-8467-72d6acce5f9f",
|
"id": "f14e560c-ef9f-4c48-8467-72d6acce5f9f",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": [],
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:48.409419720Z",
|
||||||
|
"start_time": "2023-11-07T16:29:47.824353556Z"
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@@ -126,10 +130,11 @@
|
|||||||
"8 [ 8.47 21.9 16.58 15.37 3.76 3.91 1.57 20.57 14.76 18.61] 94.58\n",
|
"8 [ 8.47 21.9 16.58 15.37 3.76 3.91 1.57 20.57 14.76 18.61] 94.58\n",
|
||||||
"9 [ 8.57 22.77 17.06 16.25 4.14 4. 1.56 22.97 14.09 19.09] 100.79\n",
|
"9 [ 8.57 22.77 17.06 16.25 4.14 4. 1.56 22.97 14.09 19.09] 100.79\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"Restricted license - for non-production use only - expires 2024-10-28\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 20 rows, 110 columns and 210 nonzeros\n",
|
"Optimize a model with 20 rows, 110 columns and 210 nonzeros\n",
|
||||||
"Model fingerprint: 0x1ff9913f\n",
|
"Model fingerprint: 0x1ff9913f\n",
|
||||||
@@ -154,22 +159,14 @@
|
|||||||
"H 0 0 2.0000000 1.27484 36.3% - 0s\n",
|
"H 0 0 2.0000000 1.27484 36.3% - 0s\n",
|
||||||
" 0 0 1.27484 0 4 2.00000 1.27484 36.3% - 0s\n",
|
" 0 0 1.27484 0 4 2.00000 1.27484 36.3% - 0s\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (38 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
"Explored 1 nodes (38 simplex iterations) in 0.02 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 3: 2 4 5 \n",
|
"Solution count 3: 2 4 5 \n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimal solution found (tolerance 1.00e-04)\n",
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
||||||
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n"
|
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"/home/axavier/.conda/envs/miplearn2/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
|
||||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -304,7 +301,12 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
"id": "1ce5f8fb-2769-4fbd-a40c-fd62b897690a",
|
"id": "1ce5f8fb-2769-4fbd-a40c-fd62b897690a",
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:48.485068449Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.406139946Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@@ -323,8 +325,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 5 rows, 10 columns and 50 nonzeros\n",
|
"Optimize a model with 5 rows, 10 columns and 50 nonzeros\n",
|
||||||
"Model fingerprint: 0xaf3ac15e\n",
|
"Model fingerprint: 0xaf3ac15e\n",
|
||||||
@@ -352,7 +354,7 @@
|
|||||||
" Cover: 1\n",
|
" Cover: 1\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (4 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
"Explored 1 nodes (4 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 2: -1279 -804 \n",
|
"Solution count 2: -1279 -804 \n",
|
||||||
"No other solutions better than -1279\n",
|
"No other solutions better than -1279\n",
|
||||||
@@ -470,7 +472,12 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 3,
|
||||||
"id": "4e0e4223-b4e0-4962-a157-82a23a86e37d",
|
"id": "4e0e4223-b4e0-4962-a157-82a23a86e37d",
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:48.575025403Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.453962705Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@@ -493,8 +500,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 21 rows, 110 columns and 220 nonzeros\n",
|
"Optimize a model with 21 rows, 110 columns and 220 nonzeros\n",
|
||||||
"Model fingerprint: 0x8d8d9346\n",
|
"Model fingerprint: 0x8d8d9346\n",
|
||||||
@@ -529,7 +536,7 @@
|
|||||||
"* 0 0 0 91.2300000 91.23000 0.00% - 0s\n",
|
"* 0 0 0 91.2300000 91.23000 0.00% - 0s\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (70 simplex iterations) in 0.02 seconds (0.00 work units)\n",
|
"Explored 1 nodes (70 simplex iterations) in 0.02 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 10: 91.23 93.92 93.98 ... 368.79\n",
|
"Solution count 10: 91.23 93.92 93.98 ... 368.79\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -643,7 +650,12 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
"id": "3224845b-9afd-463e-abf4-e0e93d304859",
|
"id": "3224845b-9afd-463e-abf4-e0e93d304859",
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:48.804292323Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.492933268Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@@ -660,8 +672,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 5 rows, 10 columns and 28 nonzeros\n",
|
"Optimize a model with 5 rows, 10 columns and 28 nonzeros\n",
|
||||||
"Model fingerprint: 0xe5c2d4fa\n",
|
"Model fingerprint: 0xe5c2d4fa\n",
|
||||||
@@ -676,8 +688,8 @@
|
|||||||
"Presolve time: 0.00s\n",
|
"Presolve time: 0.00s\n",
|
||||||
"Presolve: All rows and columns removed\n",
|
"Presolve: All rows and columns removed\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units)\n",
|
"Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 1 (of 32 available processors)\n",
|
"Thread count was 1 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 1: 213.49 \n",
|
"Solution count 1: 213.49 \n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -775,8 +787,9 @@
|
|||||||
"id": "cc797da7",
|
"id": "cc797da7",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
"jupyter": {
|
"ExecuteTime": {
|
||||||
"outputs_hidden": false
|
"end_time": "2023-11-07T16:29:48.806917868Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.781619530Z"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -795,8 +808,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 5 rows, 10 columns and 28 nonzeros\n",
|
"Optimize a model with 5 rows, 10 columns and 28 nonzeros\n",
|
||||||
"Model fingerprint: 0x4ee91388\n",
|
"Model fingerprint: 0x4ee91388\n",
|
||||||
@@ -811,9 +824,8 @@
|
|||||||
"Presolve time: 0.00s\n",
|
"Presolve time: 0.00s\n",
|
||||||
"Presolve: All rows and columns removed\n",
|
"Presolve: All rows and columns removed\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units)\n",
|
"Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 1 (of 32 available processors)\n",
|
"Thread count was 1 (of 12 available processors)\n",
|
||||||
"\n",
|
|
||||||
"Solution count 2: -1986.37 -1265.56 \n",
|
"Solution count 2: -1986.37 -1265.56 \n",
|
||||||
"No other solutions better than -1986.37\n",
|
"No other solutions better than -1986.37\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -875,11 +887,10 @@
|
|||||||
"$$\n",
|
"$$\n",
|
||||||
"\\begin{align*}\n",
|
"\\begin{align*}\n",
|
||||||
"\\text{minimize} \\;\\;\\; & -\\sum_{v \\in V} w_v x_v \\\\\n",
|
"\\text{minimize} \\;\\;\\; & -\\sum_{v \\in V} w_v x_v \\\\\n",
|
||||||
"\\text{such that} \\;\\;\\; & \\sum_{v \\in C} x_v \\leq 1 & \\forall C \\in \\mathcal{C} \\\\\n",
|
"\\text{such that} \\;\\;\\; & x_v + x_u \\leq 1 & \\forall (v,u) \\in E \\\\\n",
|
||||||
"& x_v \\in \\{0, 1\\} & \\forall v \\in V\n",
|
"& x_v \\in \\{0, 1\\} & \\forall v \\in V\n",
|
||||||
"\\end{align*}\n",
|
"\\end{align*}\n",
|
||||||
"$$\n",
|
"$$"
|
||||||
"where $\\mathcal{C}$ is the set of cliques in $G$. We recall that a clique is a subset of vertices in which every pair of vertices is adjacent."
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -903,7 +914,12 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 6,
|
||||||
"id": "0f996e99-0ec9-472b-be8a-30c9b8556931",
|
"id": "0f996e99-0ec9-472b-be8a-30c9b8556931",
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:48.954896857Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.825579097Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@@ -913,13 +929,14 @@
|
|||||||
"weights[0] [37.45 95.07 73.2 59.87 15.6 15.6 5.81 86.62 60.11 70.81]\n",
|
"weights[0] [37.45 95.07 73.2 59.87 15.6 15.6 5.81 86.62 60.11 70.81]\n",
|
||||||
"weights[1] [ 2.06 96.99 83.24 21.23 18.18 18.34 30.42 52.48 43.19 29.12]\n",
|
"weights[1] [ 2.06 96.99 83.24 21.23 18.18 18.34 30.42 52.48 43.19 29.12]\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"Set parameter PreCrush to value 1\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 10 rows, 10 columns and 24 nonzeros\n",
|
"Optimize a model with 15 rows, 10 columns and 30 nonzeros\n",
|
||||||
"Model fingerprint: 0xf4c21689\n",
|
"Model fingerprint: 0x3240ea4a\n",
|
||||||
"Variable types: 0 continuous, 10 integer (10 binary)\n",
|
"Variable types: 0 continuous, 10 integer (10 binary)\n",
|
||||||
"Coefficient statistics:\n",
|
"Coefficient statistics:\n",
|
||||||
" Matrix range [1e+00, 1e+00]\n",
|
" Matrix range [1e+00, 1e+00]\n",
|
||||||
@@ -927,26 +944,28 @@
|
|||||||
" Bounds range [1e+00, 1e+00]\n",
|
" Bounds range [1e+00, 1e+00]\n",
|
||||||
" RHS range [1e+00, 1e+00]\n",
|
" RHS range [1e+00, 1e+00]\n",
|
||||||
"Found heuristic solution: objective -219.1400000\n",
|
"Found heuristic solution: objective -219.1400000\n",
|
||||||
"Presolve removed 2 rows and 2 columns\n",
|
"Presolve removed 7 rows and 2 columns\n",
|
||||||
"Presolve time: 0.00s\n",
|
"Presolve time: 0.00s\n",
|
||||||
"Presolved: 8 rows, 8 columns, 19 nonzeros\n",
|
"Presolved: 8 rows, 8 columns, 19 nonzeros\n",
|
||||||
"Variable types: 0 continuous, 8 integer (8 binary)\n",
|
"Variable types: 0 continuous, 8 integer (8 binary)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Root relaxation: objective -2.205650e+02, 4 iterations, 0.00 seconds (0.00 work units)\n",
|
"Root relaxation: objective -2.205650e+02, 5 iterations, 0.00 seconds (0.00 work units)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" Nodes | Current Node | Objective Bounds | Work\n",
|
" Nodes | Current Node | Objective Bounds | Work\n",
|
||||||
" Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time\n",
|
" Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time\n",
|
||||||
"\n",
|
"\n",
|
||||||
" 0 0 infeasible 0 -219.14000 -219.14000 0.00% - 0s\n",
|
" 0 0 infeasible 0 -219.14000 -219.14000 0.00% - 0s\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (4 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
"Explored 1 nodes (5 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 1: -219.14 \n",
|
"Solution count 1: -219.14 \n",
|
||||||
"No other solutions better than -219.14\n",
|
"No other solutions better than -219.14\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimal solution found (tolerance 1.00e-04)\n",
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
||||||
"Best objective -2.191400000000e+02, best bound -2.191400000000e+02, gap 0.0000%\n"
|
"Best objective -2.191400000000e+02, best bound -2.191400000000e+02, gap 0.0000%\n",
|
||||||
|
"\n",
|
||||||
|
"User-callback calls 300, time in user-callback 0.00 sec\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -956,7 +975,7 @@
|
|||||||
"from scipy.stats import uniform, randint\n",
|
"from scipy.stats import uniform, randint\n",
|
||||||
"from miplearn.problems.stab import (\n",
|
"from miplearn.problems.stab import (\n",
|
||||||
" MaxWeightStableSetGenerator,\n",
|
" MaxWeightStableSetGenerator,\n",
|
||||||
" build_stab_model_gurobipy,\n",
|
" build_stab_model,\n",
|
||||||
")\n",
|
")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Set random seed to make example reproducible\n",
|
"# Set random seed to make example reproducible\n",
|
||||||
@@ -979,7 +998,7 @@
|
|||||||
"print()\n",
|
"print()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Load and optimize the first instance\n",
|
"# Load and optimize the first instance\n",
|
||||||
"model = build_stab_model_gurobipy(data[0])\n",
|
"model = build_stab_model(data[0])\n",
|
||||||
"model.optimize()\n"
|
"model.optimize()\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -1053,8 +1072,9 @@
|
|||||||
"id": "9d0c56c6",
|
"id": "9d0c56c6",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
"jupyter": {
|
"ExecuteTime": {
|
||||||
"outputs_hidden": false
|
"end_time": "2023-11-07T16:29:48.958833448Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.898121017Z"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -1085,11 +1105,12 @@
|
|||||||
" [ 444. 398. 371. 454. 356. 476. 565. 374. 0. 274.]\n",
|
" [ 444. 398. 371. 454. 356. 476. 565. 374. 0. 274.]\n",
|
||||||
" [ 668. 446. 317. 648. 469. 752. 394. 286. 274. 0.]]\n",
|
" [ 668. 446. 317. 648. 469. 752. 394. 286. 274. 0.]]\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"Set parameter PreCrush to value 1\n",
|
||||||
"Set parameter LazyConstraints to value 1\n",
|
"Set parameter LazyConstraints to value 1\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 10 rows, 45 columns and 90 nonzeros\n",
|
"Optimize a model with 10 rows, 45 columns and 90 nonzeros\n",
|
||||||
"Model fingerprint: 0x719675e5\n",
|
"Model fingerprint: 0x719675e5\n",
|
||||||
@@ -1114,7 +1135,7 @@
|
|||||||
" Lazy constraints: 3\n",
|
" Lazy constraints: 3\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (17 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
"Explored 1 nodes (17 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 1: 2921 \n",
|
"Solution count 1: 2921 \n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -1263,8 +1284,9 @@
|
|||||||
"id": "6217da7c",
|
"id": "6217da7c",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
"jupyter": {
|
"ExecuteTime": {
|
||||||
"outputs_hidden": false
|
"end_time": "2023-11-07T16:29:49.061613905Z",
|
||||||
|
"start_time": "2023-11-07T16:29:48.941857719Z"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -1300,8 +1322,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 578 rows, 360 columns and 2128 nonzeros\n",
|
"Optimize a model with 578 rows, 360 columns and 2128 nonzeros\n",
|
||||||
"Model fingerprint: 0x4dc1c661\n",
|
"Model fingerprint: 0x4dc1c661\n",
|
||||||
@@ -1312,7 +1334,7 @@
|
|||||||
" Bounds range [1e+00, 1e+00]\n",
|
" Bounds range [1e+00, 1e+00]\n",
|
||||||
" RHS range [1e+00, 1e+03]\n",
|
" RHS range [1e+00, 1e+03]\n",
|
||||||
"Presolve removed 244 rows and 131 columns\n",
|
"Presolve removed 244 rows and 131 columns\n",
|
||||||
"Presolve time: 0.02s\n",
|
"Presolve time: 0.01s\n",
|
||||||
"Presolved: 334 rows, 229 columns, 842 nonzeros\n",
|
"Presolved: 334 rows, 229 columns, 842 nonzeros\n",
|
||||||
"Variable types: 116 continuous, 113 integer (113 binary)\n",
|
"Variable types: 116 continuous, 113 integer (113 binary)\n",
|
||||||
"Found heuristic solution: objective 440662.46430\n",
|
"Found heuristic solution: objective 440662.46430\n",
|
||||||
@@ -1340,7 +1362,7 @@
|
|||||||
" Relax-and-lift: 7\n",
|
" Relax-and-lift: 7\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (234 simplex iterations) in 0.04 seconds (0.02 work units)\n",
|
"Explored 1 nodes (234 simplex iterations) in 0.04 seconds (0.02 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 5: 364722 368600 374044 ... 440662\n",
|
"Solution count 5: 364722 368600 374044 ... 440662\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -1450,7 +1472,12 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 9,
|
||||||
"id": "5fff7afe-5b7a-4889-a502-66751ec979bf",
|
"id": "5fff7afe-5b7a-4889-a502-66751ec979bf",
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2023-11-07T16:29:49.075657363Z",
|
||||||
|
"start_time": "2023-11-07T16:29:49.049561363Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@@ -1462,8 +1489,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
"Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]\n",
|
"CPU model: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, instruction set [SSE2|AVX|AVX2]\n",
|
||||||
"Thread count: 16 physical cores, 32 logical processors, using up to 32 threads\n",
|
"Thread count: 6 physical cores, 12 logical processors, using up to 12 threads\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Optimize a model with 15 rows, 10 columns and 30 nonzeros\n",
|
"Optimize a model with 15 rows, 10 columns and 30 nonzeros\n",
|
||||||
"Model fingerprint: 0x2d2d1390\n",
|
"Model fingerprint: 0x2d2d1390\n",
|
||||||
@@ -1487,7 +1514,7 @@
|
|||||||
" 0 0 infeasible 0 301.00000 301.00000 0.00% - 0s\n",
|
" 0 0 infeasible 0 301.00000 301.00000 0.00% - 0s\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Explored 1 nodes (8 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
"Explored 1 nodes (8 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
||||||
"Thread count was 32 (of 32 available processors)\n",
|
"Thread count was 12 (of 12 available processors)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Solution count 1: 301 \n",
|
"Solution count 1: 301 \n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -1531,12 +1558,13 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 9,
|
||||||
"id": "9f12e91f",
|
"id": "9f12e91f",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
"jupyter": {
|
"ExecuteTime": {
|
||||||
"outputs_hidden": false
|
"end_time": "2023-11-07T16:29:49.075852252Z",
|
||||||
|
"start_time": "2023-11-07T16:29:49.050243601Z"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
|
|||||||
@@ -60,8 +60,7 @@ class BasicCollector:
|
|||||||
|
|
||||||
# Add lazy constraints to model
|
# Add lazy constraints to model
|
||||||
if model.lazy_enforce is not None:
|
if model.lazy_enforce is not None:
|
||||||
model.lazy_enforce(model, model.lazy_constrs_)
|
model.lazy_enforce(model, model.lazy_)
|
||||||
h5.put_scalar("mip_lazy", repr(model.lazy_constrs_))
|
|
||||||
|
|
||||||
# Save MPS file
|
# Save MPS file
|
||||||
model.write(mps_filename)
|
model.write(mps_filename)
|
||||||
|
|||||||
0
miplearn/components/cuts/__init__.py
Normal file
0
miplearn/components/cuts/__init__.py
Normal file
105
miplearn/components/cuts/mem.py
Normal file
105
miplearn/components/cuts/mem.py
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import List, Dict, Any, Hashable, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.preprocessing import MultiLabelBinarizer
|
||||||
|
|
||||||
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
|
from miplearn.h5 import H5File
|
||||||
|
from miplearn.solvers.abstract import AbstractModel
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class _BaseMemorizingConstrComponent:
|
||||||
|
def __init__(self, clf: Any, extractor: FeaturesExtractor, field: str) -> None:
|
||||||
|
self.clf = clf
|
||||||
|
self.extractor = extractor
|
||||||
|
self.constrs_: List[Hashable] = []
|
||||||
|
self.n_features_: int = 0
|
||||||
|
self.n_targets_: int = 0
|
||||||
|
self.field = field
|
||||||
|
|
||||||
|
def fit(
|
||||||
|
self,
|
||||||
|
train_h5: List[str],
|
||||||
|
) -> None:
|
||||||
|
logger.info("Reading training data...")
|
||||||
|
n_samples = len(train_h5)
|
||||||
|
x, y, constrs, n_features = [], [], [], None
|
||||||
|
constr_to_idx: Dict[Hashable, int] = {}
|
||||||
|
for h5_filename in train_h5:
|
||||||
|
with H5File(h5_filename, "r") as h5:
|
||||||
|
# Store constraints
|
||||||
|
sample_constrs_str = h5.get_scalar(self.field)
|
||||||
|
assert sample_constrs_str is not None
|
||||||
|
assert isinstance(sample_constrs_str, str)
|
||||||
|
sample_constrs = eval(sample_constrs_str)
|
||||||
|
assert isinstance(sample_constrs, list)
|
||||||
|
y_sample = []
|
||||||
|
for c in sample_constrs:
|
||||||
|
if c not in constr_to_idx:
|
||||||
|
constr_to_idx[c] = len(constr_to_idx)
|
||||||
|
constrs.append(c)
|
||||||
|
y_sample.append(constr_to_idx[c])
|
||||||
|
y.append(y_sample)
|
||||||
|
|
||||||
|
# Extract features
|
||||||
|
x_sample = self.extractor.get_instance_features(h5)
|
||||||
|
assert len(x_sample.shape) == 1
|
||||||
|
if n_features is None:
|
||||||
|
n_features = len(x_sample)
|
||||||
|
else:
|
||||||
|
assert len(x_sample) == n_features
|
||||||
|
x.append(x_sample)
|
||||||
|
logger.info("Constructing matrices...")
|
||||||
|
assert n_features is not None
|
||||||
|
self.n_features_ = n_features
|
||||||
|
self.constrs_ = constrs
|
||||||
|
self.n_targets_ = len(constr_to_idx)
|
||||||
|
x_np = np.vstack(x)
|
||||||
|
assert x_np.shape == (n_samples, n_features)
|
||||||
|
y_np = MultiLabelBinarizer().fit_transform(y)
|
||||||
|
assert y_np.shape == (n_samples, self.n_targets_)
|
||||||
|
logger.info(
|
||||||
|
f"Dataset has {n_samples:,d} samples, "
|
||||||
|
f"{n_features:,d} features and {self.n_targets_:,d} targets"
|
||||||
|
)
|
||||||
|
logger.info("Training classifier...")
|
||||||
|
self.clf.fit(x_np, y_np)
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self,
|
||||||
|
msg: str,
|
||||||
|
test_h5: str,
|
||||||
|
) -> List[Hashable]:
|
||||||
|
with H5File(test_h5, "r") as h5:
|
||||||
|
x_sample = self.extractor.get_instance_features(h5)
|
||||||
|
assert x_sample.shape == (self.n_features_,)
|
||||||
|
x_sample = x_sample.reshape(1, -1)
|
||||||
|
logger.info(msg)
|
||||||
|
y = self.clf.predict(x_sample)
|
||||||
|
assert y.shape == (1, self.n_targets_)
|
||||||
|
y = y.reshape(-1)
|
||||||
|
return [self.constrs_[i] for (i, yi) in enumerate(y) if yi > 0.5]
|
||||||
|
|
||||||
|
|
||||||
|
class MemorizingCutsComponent(_BaseMemorizingConstrComponent):
|
||||||
|
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
||||||
|
super().__init__(clf, extractor, "mip_cuts")
|
||||||
|
|
||||||
|
def before_mip(
|
||||||
|
self,
|
||||||
|
test_h5: str,
|
||||||
|
model: AbstractModel,
|
||||||
|
stats: Dict[str, Any],
|
||||||
|
) -> None:
|
||||||
|
if model.cuts_enforce is None:
|
||||||
|
return
|
||||||
|
assert self.constrs_ is not None
|
||||||
|
model.cuts_aot_ = self.predict("Predicting cutting planes...", test_h5)
|
||||||
|
stats["Cuts: AOT"] = len(model.cuts_aot_)
|
||||||
@@ -1,74 +1,22 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from typing import List, Dict, Any, Hashable
|
from typing import List, Dict, Any, Hashable
|
||||||
|
|
||||||
import numpy as np
|
from miplearn.components.cuts.mem import (
|
||||||
from sklearn.preprocessing import MultiLabelBinarizer
|
_BaseMemorizingConstrComponent,
|
||||||
|
)
|
||||||
from miplearn.extractors.abstract import FeaturesExtractor
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
from miplearn.h5 import H5File
|
|
||||||
from miplearn.solvers.abstract import AbstractModel
|
from miplearn.solvers.abstract import AbstractModel
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class MemorizingLazyConstrComponent:
|
class MemorizingLazyComponent(_BaseMemorizingConstrComponent):
|
||||||
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
||||||
self.clf = clf
|
super().__init__(clf, extractor, "mip_lazy")
|
||||||
self.extractor = extractor
|
|
||||||
self.constrs_: List[Hashable] = []
|
|
||||||
self.n_features_: int = 0
|
|
||||||
self.n_targets_: int = 0
|
|
||||||
|
|
||||||
def fit(self, train_h5: List[str]) -> None:
|
|
||||||
logger.info("Reading training data...")
|
|
||||||
n_samples = len(train_h5)
|
|
||||||
x, y, constrs, n_features = [], [], [], None
|
|
||||||
constr_to_idx: Dict[Hashable, int] = {}
|
|
||||||
for h5_filename in train_h5:
|
|
||||||
with H5File(h5_filename, "r") as h5:
|
|
||||||
|
|
||||||
# Store lazy constraints
|
|
||||||
sample_constrs_str = h5.get_scalar("mip_lazy")
|
|
||||||
assert sample_constrs_str is not None
|
|
||||||
assert isinstance(sample_constrs_str, str)
|
|
||||||
sample_constrs = eval(sample_constrs_str)
|
|
||||||
assert isinstance(sample_constrs, list)
|
|
||||||
y_sample = []
|
|
||||||
for c in sample_constrs:
|
|
||||||
if c not in constr_to_idx:
|
|
||||||
constr_to_idx[c] = len(constr_to_idx)
|
|
||||||
constrs.append(c)
|
|
||||||
y_sample.append(constr_to_idx[c])
|
|
||||||
y.append(y_sample)
|
|
||||||
|
|
||||||
# Extract features
|
|
||||||
x_sample = self.extractor.get_instance_features(h5)
|
|
||||||
assert len(x_sample.shape) == 1
|
|
||||||
if n_features is None:
|
|
||||||
n_features = len(x_sample)
|
|
||||||
else:
|
|
||||||
assert len(x_sample) == n_features
|
|
||||||
x.append(x_sample)
|
|
||||||
|
|
||||||
logger.info("Constructing matrices...")
|
|
||||||
assert n_features is not None
|
|
||||||
self.n_features_ = n_features
|
|
||||||
self.constrs_ = constrs
|
|
||||||
self.n_targets_ = len(constr_to_idx)
|
|
||||||
x_np = np.vstack(x)
|
|
||||||
assert x_np.shape == (n_samples, n_features)
|
|
||||||
y_np = MultiLabelBinarizer().fit_transform(y)
|
|
||||||
assert y_np.shape == (n_samples, self.n_targets_)
|
|
||||||
logger.info(
|
|
||||||
f"Dataset has {n_samples:,d} samples, "
|
|
||||||
f"{n_features:,d} features and {self.n_targets_:,d} targets"
|
|
||||||
)
|
|
||||||
|
|
||||||
logger.info("Training classifier...")
|
|
||||||
self.clf.fit(x_np, y_np)
|
|
||||||
|
|
||||||
def before_mip(
|
def before_mip(
|
||||||
self,
|
self,
|
||||||
@@ -78,23 +26,8 @@ class MemorizingLazyConstrComponent:
|
|||||||
) -> None:
|
) -> None:
|
||||||
if model.lazy_enforce is None:
|
if model.lazy_enforce is None:
|
||||||
return
|
return
|
||||||
|
|
||||||
assert self.constrs_ is not None
|
assert self.constrs_ is not None
|
||||||
|
violations = self.predict("Predicting violated lazy constraints...", test_h5)
|
||||||
# Read features
|
|
||||||
with H5File(test_h5, "r") as h5:
|
|
||||||
x_sample = self.extractor.get_instance_features(h5)
|
|
||||||
assert x_sample.shape == (self.n_features_,)
|
|
||||||
x_sample = x_sample.reshape(1, -1)
|
|
||||||
|
|
||||||
# Predict violated constraints
|
|
||||||
logger.info("Predicting violated lazy constraints...")
|
|
||||||
y = self.clf.predict(x_sample)
|
|
||||||
assert y.shape == (1, self.n_targets_)
|
|
||||||
y = y.reshape(-1)
|
|
||||||
|
|
||||||
# Enforce constraints
|
|
||||||
violations = [self.constrs_[i] for (i, yi) in enumerate(y) if yi > 0.5]
|
|
||||||
logger.info(f"Enforcing {len(violations)} constraints ahead-of-time...")
|
logger.info(f"Enforcing {len(violations)} constraints ahead-of-time...")
|
||||||
model.lazy_enforce(model, violations)
|
model.lazy_enforce(model, violations)
|
||||||
stats["Lazy Constraints: AOT"] = len(violations)
|
stats["Lazy Constraints: AOT"] = len(violations)
|
||||||
|
|||||||
@@ -1,14 +1,13 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
import logging
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import List, Union
|
from typing import List, Union, Any, Hashable
|
||||||
|
|
||||||
import gurobipy as gp
|
import gurobipy as gp
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
|
||||||
from gurobipy import GRB, quicksum
|
from gurobipy import GRB, quicksum
|
||||||
from networkx import Graph
|
from networkx import Graph
|
||||||
from scipy.stats import uniform, randint
|
from scipy.stats import uniform, randint
|
||||||
@@ -16,7 +15,8 @@ from scipy.stats.distributions import rv_frozen
|
|||||||
|
|
||||||
from miplearn.io import read_pkl_gz
|
from miplearn.io import read_pkl_gz
|
||||||
from miplearn.solvers.gurobi import GurobiModel
|
from miplearn.solvers.gurobi import GurobiModel
|
||||||
from miplearn.solvers.pyomo import PyomoModel
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -82,35 +82,43 @@ class MaxWeightStableSetGenerator:
|
|||||||
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
||||||
|
|
||||||
|
|
||||||
def build_stab_model_gurobipy(data: MaxWeightStableSetData) -> GurobiModel:
|
def build_stab_model(data: MaxWeightStableSetData) -> GurobiModel:
|
||||||
data = _read_stab_data(data)
|
|
||||||
model = gp.Model()
|
|
||||||
nodes = list(data.graph.nodes)
|
|
||||||
x = model.addVars(nodes, vtype=GRB.BINARY, name="x")
|
|
||||||
model.setObjective(quicksum(-data.weights[i] * x[i] for i in nodes))
|
|
||||||
for clique in nx.find_cliques(data.graph):
|
|
||||||
model.addConstr(quicksum(x[i] for i in clique) <= 1)
|
|
||||||
model.update()
|
|
||||||
return GurobiModel(model)
|
|
||||||
|
|
||||||
|
|
||||||
def build_stab_model_pyomo(
|
|
||||||
data: MaxWeightStableSetData,
|
|
||||||
solver: str = "gurobi_persistent",
|
|
||||||
) -> PyomoModel:
|
|
||||||
data = _read_stab_data(data)
|
|
||||||
model = pe.ConcreteModel()
|
|
||||||
nodes = pe.Set(initialize=list(data.graph.nodes))
|
|
||||||
model.x = pe.Var(nodes, domain=pe.Boolean, name="x")
|
|
||||||
model.obj = pe.Objective(expr=sum([-data.weights[i] * model.x[i] for i in nodes]))
|
|
||||||
model.clique_eqs = pe.ConstraintList()
|
|
||||||
for clique in nx.find_cliques(data.graph):
|
|
||||||
model.clique_eqs.add(expr=sum(model.x[i] for i in clique) <= 1)
|
|
||||||
return PyomoModel(model, solver)
|
|
||||||
|
|
||||||
|
|
||||||
def _read_stab_data(data: Union[str, MaxWeightStableSetData]) -> MaxWeightStableSetData:
|
|
||||||
if isinstance(data, str):
|
if isinstance(data, str):
|
||||||
data = read_pkl_gz(data)
|
data = read_pkl_gz(data)
|
||||||
assert isinstance(data, MaxWeightStableSetData)
|
assert isinstance(data, MaxWeightStableSetData)
|
||||||
return data
|
|
||||||
|
model = gp.Model()
|
||||||
|
nodes = list(data.graph.nodes)
|
||||||
|
|
||||||
|
# Variables and objective function
|
||||||
|
x = model.addVars(nodes, vtype=GRB.BINARY, name="x")
|
||||||
|
model.setObjective(quicksum(-data.weights[i] * x[i] for i in nodes))
|
||||||
|
|
||||||
|
# Edge inequalities
|
||||||
|
for (i1, i2) in data.graph.edges:
|
||||||
|
model.addConstr(x[i1] + x[i2] <= 1)
|
||||||
|
|
||||||
|
def cuts_separate(m: GurobiModel) -> List[Hashable]:
|
||||||
|
# Retrieve optimal fractional solution
|
||||||
|
x_val = m.inner.cbGetNodeRel(x)
|
||||||
|
|
||||||
|
# Check that we selected at most one vertex for each
|
||||||
|
# clique in the graph (sum <= 1)
|
||||||
|
violations: List[Hashable] = []
|
||||||
|
for clique in nx.find_cliques(data.graph):
|
||||||
|
if sum(x_val[i] for i in clique) > 1.0001:
|
||||||
|
violations.append(tuple(sorted(clique)))
|
||||||
|
return violations
|
||||||
|
|
||||||
|
def cuts_enforce(m: GurobiModel, violations: List[Any]) -> None:
|
||||||
|
logger.info(f"Adding {len(violations)} clique cuts...")
|
||||||
|
for clique in violations:
|
||||||
|
m.add_constr(quicksum(x[i] for i in clique) <= 1)
|
||||||
|
|
||||||
|
model.update()
|
||||||
|
|
||||||
|
return GurobiModel(
|
||||||
|
model,
|
||||||
|
cuts_separate=cuts_separate,
|
||||||
|
cuts_enforce=cuts_enforce,
|
||||||
|
)
|
||||||
|
|||||||
@@ -23,7 +23,11 @@ class AbstractModel(ABC):
|
|||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.lazy_enforce: Optional[Callable] = None
|
self.lazy_enforce: Optional[Callable] = None
|
||||||
self.lazy_separate: Optional[Callable] = None
|
self.lazy_separate: Optional[Callable] = None
|
||||||
self.lazy_constrs_: Optional[List[Any]] = None
|
self.lazy_: Optional[List[Any]] = None
|
||||||
|
self.cuts_enforce: Optional[Callable] = None
|
||||||
|
self.cuts_separate: Optional[Callable] = None
|
||||||
|
self.cuts_: Optional[List[Any]] = None
|
||||||
|
self.cuts_aot_: Optional[List[Any]] = None
|
||||||
self.where = self.WHERE_DEFAULT
|
self.where = self.WHERE_DEFAULT
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
import logging
|
||||||
from typing import Dict, Optional, Callable, Any, List
|
from typing import Dict, Optional, Callable, Any, List
|
||||||
|
|
||||||
import gurobipy as gp
|
import gurobipy as gp
|
||||||
@@ -11,16 +12,40 @@ from scipy.sparse import lil_matrix
|
|||||||
from miplearn.h5 import H5File
|
from miplearn.h5 import H5File
|
||||||
from miplearn.solvers.abstract import AbstractModel
|
from miplearn.solvers.abstract import AbstractModel
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
def _gurobi_callback(model: AbstractModel, where: int) -> None:
|
|
||||||
assert model.lazy_separate is not None
|
def _gurobi_callback(model: AbstractModel, gp_model: gp.Model, where: int) -> None:
|
||||||
assert model.lazy_enforce is not None
|
# Lazy constraints
|
||||||
assert model.lazy_constrs_ is not None
|
if model.lazy_separate is not None:
|
||||||
if where == GRB.Callback.MIPSOL:
|
assert model.lazy_enforce is not None
|
||||||
model.where = model.WHERE_LAZY
|
assert model.lazy_ is not None
|
||||||
violations = model.lazy_separate(model)
|
if where == GRB.Callback.MIPSOL:
|
||||||
model.lazy_constrs_.extend(violations)
|
model.where = model.WHERE_LAZY
|
||||||
model.lazy_enforce(model, violations)
|
violations = model.lazy_separate(model)
|
||||||
|
if len(violations) > 0:
|
||||||
|
model.lazy_.extend(violations)
|
||||||
|
model.lazy_enforce(model, violations)
|
||||||
|
|
||||||
|
# User cuts
|
||||||
|
if model.cuts_separate is not None:
|
||||||
|
assert model.cuts_enforce is not None
|
||||||
|
assert model.cuts_ is not None
|
||||||
|
if where == GRB.Callback.MIPNODE:
|
||||||
|
status = gp_model.cbGet(GRB.Callback.MIPNODE_STATUS)
|
||||||
|
if status == GRB.OPTIMAL:
|
||||||
|
model.where = model.WHERE_CUTS
|
||||||
|
if model.cuts_aot_ is not None:
|
||||||
|
violations = model.cuts_aot_
|
||||||
|
model.cuts_aot_ = None
|
||||||
|
logger.info(f"Enforcing {len(violations)} cuts ahead-of-time...")
|
||||||
|
else:
|
||||||
|
violations = model.cuts_separate(model)
|
||||||
|
if len(violations) > 0:
|
||||||
|
model.cuts_.extend(violations)
|
||||||
|
model.cuts_enforce(model, violations)
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
model.where = model.WHERE_DEFAULT
|
model.where = model.WHERE_DEFAULT
|
||||||
|
|
||||||
|
|
||||||
@@ -44,10 +69,14 @@ class GurobiModel(AbstractModel):
|
|||||||
inner: gp.Model,
|
inner: gp.Model,
|
||||||
lazy_separate: Optional[Callable] = None,
|
lazy_separate: Optional[Callable] = None,
|
||||||
lazy_enforce: Optional[Callable] = None,
|
lazy_enforce: Optional[Callable] = None,
|
||||||
|
cuts_separate: Optional[Callable] = None,
|
||||||
|
cuts_enforce: Optional[Callable] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.lazy_separate = lazy_separate
|
self.lazy_separate = lazy_separate
|
||||||
self.lazy_enforce = lazy_enforce
|
self.lazy_enforce = lazy_enforce
|
||||||
|
self.cuts_separate = cuts_separate
|
||||||
|
self.cuts_enforce = cuts_enforce
|
||||||
self.inner = inner
|
self.inner = inner
|
||||||
|
|
||||||
def add_constrs(
|
def add_constrs(
|
||||||
@@ -125,6 +154,10 @@ class GurobiModel(AbstractModel):
|
|||||||
except AttributeError:
|
except AttributeError:
|
||||||
pass
|
pass
|
||||||
self._extract_after_mip_solution_pool(h5)
|
self._extract_after_mip_solution_pool(h5)
|
||||||
|
if self.lazy_ is not None:
|
||||||
|
h5.put_scalar("mip_lazy", repr(self.lazy_))
|
||||||
|
if self.cuts_ is not None:
|
||||||
|
h5.put_scalar("mip_cuts", repr(self.cuts_))
|
||||||
|
|
||||||
def fix_variables(
|
def fix_variables(
|
||||||
self,
|
self,
|
||||||
@@ -149,14 +182,22 @@ class GurobiModel(AbstractModel):
|
|||||||
stats["Fixed variables"] = n_fixed
|
stats["Fixed variables"] = n_fixed
|
||||||
|
|
||||||
def optimize(self) -> None:
|
def optimize(self) -> None:
|
||||||
self.lazy_constrs_ = []
|
self.lazy_ = []
|
||||||
|
self.cuts_ = []
|
||||||
|
|
||||||
def callback(_: gp.Model, where: int) -> None:
|
def callback(_: gp.Model, where: int) -> None:
|
||||||
_gurobi_callback(self, where)
|
_gurobi_callback(self, self.inner, where)
|
||||||
|
|
||||||
|
# Required parameters for lazy constraints
|
||||||
if self.lazy_enforce is not None:
|
if self.lazy_enforce is not None:
|
||||||
self.inner.setParam("PreCrush", 1)
|
self.inner.setParam("PreCrush", 1)
|
||||||
self.inner.setParam("LazyConstraints", 1)
|
self.inner.setParam("LazyConstraints", 1)
|
||||||
|
|
||||||
|
# Required parameters for user cuts
|
||||||
|
if self.cuts_enforce is not None:
|
||||||
|
self.inner.setParam("PreCrush", 1)
|
||||||
|
|
||||||
|
if self.lazy_enforce is not None or self.cuts_enforce is not None:
|
||||||
self.inner.optimize(callback)
|
self.inner.optimize(callback)
|
||||||
else:
|
else:
|
||||||
self.inner.optimize()
|
self.inner.optimize()
|
||||||
|
|||||||
@@ -36,7 +36,6 @@ class PyomoModel(AbstractModel):
|
|||||||
self._is_warm_start_available = False
|
self._is_warm_start_available = False
|
||||||
self.lazy_separate = lazy_separate
|
self.lazy_separate = lazy_separate
|
||||||
self.lazy_enforce = lazy_enforce
|
self.lazy_enforce = lazy_enforce
|
||||||
self.lazy_constrs_: Optional[List[Any]] = None
|
|
||||||
if not hasattr(self.inner, "dual"):
|
if not hasattr(self.inner, "dual"):
|
||||||
self.inner.dual = Suffix(direction=Suffix.IMPORT)
|
self.inner.dual = Suffix(direction=Suffix.IMPORT)
|
||||||
self.inner.rc = Suffix(direction=Suffix.IMPORT)
|
self.inner.rc = Suffix(direction=Suffix.IMPORT)
|
||||||
@@ -131,15 +130,14 @@ class PyomoModel(AbstractModel):
|
|||||||
self.solver.update_var(var)
|
self.solver.update_var(var)
|
||||||
|
|
||||||
def optimize(self) -> None:
|
def optimize(self) -> None:
|
||||||
self.lazy_constrs_ = []
|
self.lazy_ = []
|
||||||
|
|
||||||
if self.lazy_separate is not None:
|
if self.lazy_separate is not None:
|
||||||
assert (
|
assert (
|
||||||
self.solver_name == "gurobi_persistent"
|
self.solver_name == "gurobi_persistent"
|
||||||
), "Callbacks are currently only supported on gurobi_persistent"
|
), "Callbacks are currently only supported on gurobi_persistent"
|
||||||
|
|
||||||
def callback(_: Any, __: Any, where: int) -> None:
|
def callback(_: Any, __: Any, where: int) -> None:
|
||||||
_gurobi_callback(self, where)
|
_gurobi_callback(self, self.solver, where)
|
||||||
|
|
||||||
self.solver.set_gurobi_param("PreCrush", 1)
|
self.solver.set_gurobi_param("PreCrush", 1)
|
||||||
self.solver.set_gurobi_param("LazyConstraints", 1)
|
self.solver.set_gurobi_param("LazyConstraints", 1)
|
||||||
|
|||||||
0
tests/components/cuts/__init__.py
Normal file
0
tests/components/cuts/__init__.py
Normal file
80
tests/components/cuts/test_mem.py
Normal file
80
tests/components/cuts/test_mem.py
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from typing import Any, List, Hashable, Dict
|
||||||
|
from unittest.mock import Mock
|
||||||
|
|
||||||
|
import gurobipy as gp
|
||||||
|
import networkx as nx
|
||||||
|
from gurobipy import GRB, quicksum
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
|
from miplearn.components.cuts.mem import MemorizingCutsComponent
|
||||||
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
|
from miplearn.problems.stab import build_stab_model
|
||||||
|
from miplearn.solvers.gurobi import GurobiModel
|
||||||
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# def test_usage() -> None:
|
||||||
|
# model = _build_cut_model()
|
||||||
|
# solver = LearningSolver(components=[])
|
||||||
|
# solver.optimize(model)
|
||||||
|
# assert model.cuts_ is not None
|
||||||
|
# assert len(model.cuts_) > 0
|
||||||
|
# assert False
|
||||||
|
|
||||||
|
|
||||||
|
def test_mem_component(
|
||||||
|
stab_h5: List[str],
|
||||||
|
default_extractor: FeaturesExtractor,
|
||||||
|
) -> None:
|
||||||
|
clf = Mock(wraps=DummyClassifier())
|
||||||
|
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||||
|
comp.fit(stab_h5)
|
||||||
|
|
||||||
|
# Should call fit method with correct arguments
|
||||||
|
clf.fit.assert_called()
|
||||||
|
x, y = clf.fit.call_args.args
|
||||||
|
assert x.shape == (3, 50)
|
||||||
|
assert y.shape == (3, 388)
|
||||||
|
y = y.tolist()
|
||||||
|
assert y[0][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||||
|
assert y[1][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
|
||||||
|
assert y[2][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]
|
||||||
|
|
||||||
|
# Should store violations
|
||||||
|
assert comp.constrs_ is not None
|
||||||
|
assert comp.n_features_ == 50
|
||||||
|
assert comp.n_targets_ == 388
|
||||||
|
assert len(comp.constrs_) == 388
|
||||||
|
|
||||||
|
# Call before-mip
|
||||||
|
stats: Dict[str, Any] = {}
|
||||||
|
model = Mock()
|
||||||
|
comp.before_mip(stab_h5[0], model, stats)
|
||||||
|
|
||||||
|
# Should call predict with correct args
|
||||||
|
clf.predict.assert_called()
|
||||||
|
(x_test,) = clf.predict.call_args.args
|
||||||
|
assert x_test.shape == (1, 50)
|
||||||
|
|
||||||
|
# Should set cuts_aot_
|
||||||
|
assert model.cuts_aot_ is not None
|
||||||
|
assert len(model.cuts_aot_) == 243
|
||||||
|
|
||||||
|
|
||||||
|
def test_usage_stab(
|
||||||
|
stab_h5: List[str],
|
||||||
|
default_extractor: FeaturesExtractor,
|
||||||
|
) -> None:
|
||||||
|
data_filenames = [f.replace(".h5", ".pkl.gz") for f in stab_h5]
|
||||||
|
clf = KNeighborsClassifier(n_neighbors=1)
|
||||||
|
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||||
|
solver = LearningSolver(components=[comp])
|
||||||
|
solver.fit(data_filenames)
|
||||||
|
stats = solver.optimize(data_filenames[0], build_stab_model)
|
||||||
|
assert stats["Cuts: AOT"] > 0
|
||||||
@@ -8,7 +8,7 @@ from unittest.mock import Mock
|
|||||||
from sklearn.dummy import DummyClassifier
|
from sklearn.dummy import DummyClassifier
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
from miplearn.components.lazy.mem import MemorizingLazyConstrComponent
|
from miplearn.components.lazy.mem import MemorizingLazyComponent
|
||||||
from miplearn.extractors.abstract import FeaturesExtractor
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
from miplearn.problems.tsp import build_tsp_model
|
from miplearn.problems.tsp import build_tsp_model
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
@@ -19,7 +19,7 @@ def test_mem_component(
|
|||||||
default_extractor: FeaturesExtractor,
|
default_extractor: FeaturesExtractor,
|
||||||
) -> None:
|
) -> None:
|
||||||
clf = Mock(wraps=DummyClassifier())
|
clf = Mock(wraps=DummyClassifier())
|
||||||
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
comp = MemorizingLazyComponent(clf=clf, extractor=default_extractor)
|
||||||
comp.fit(tsp_h5)
|
comp.fit(tsp_h5)
|
||||||
|
|
||||||
# Should call fit method with correct arguments
|
# Should call fit method with correct arguments
|
||||||
@@ -56,7 +56,7 @@ def test_usage_tsp(
|
|||||||
# Should not crash
|
# Should not crash
|
||||||
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
|
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
|
||||||
clf = KNeighborsClassifier(n_neighbors=1)
|
clf = KNeighborsClassifier(n_neighbors=1)
|
||||||
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
comp = MemorizingLazyComponent(clf=clf, extractor=default_extractor)
|
||||||
solver = LearningSolver(components=[comp])
|
solver = LearningSolver(components=[comp])
|
||||||
solver.fit(data_filenames)
|
solver.fit(data_filenames)
|
||||||
solver.optimize(data_filenames[0], build_tsp_model)
|
solver.optimize(data_filenames[0], build_tsp_model)
|
||||||
|
|||||||
@@ -1,10 +1,13 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import tempfile
|
||||||
from glob import glob
|
from glob import glob
|
||||||
from os.path import dirname
|
from os.path import dirname, basename, isfile
|
||||||
from typing import List
|
from tempfile import NamedTemporaryFile
|
||||||
|
from typing import List, Any
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
@@ -12,14 +15,45 @@ from miplearn.extractors.abstract import FeaturesExtractor
|
|||||||
from miplearn.extractors.fields import H5FieldsExtractor
|
from miplearn.extractors.fields import H5FieldsExtractor
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
def _h5_fixture(pattern: str, request: Any) -> List[str]:
|
||||||
def multiknapsack_h5() -> List[str]:
|
"""
|
||||||
return sorted(glob(f"{dirname(__file__)}/fixtures/multiknapsack-n100*.h5"))
|
Create a temporary copy of the provided .h5 files, along with the companion
|
||||||
|
.pkl.gz files, and return the path to the copy. Also register a finalizer,
|
||||||
|
so that the temporary folder is removed after the tests.
|
||||||
|
"""
|
||||||
|
filenames = glob(f"{dirname(__file__)}/fixtures/{pattern}")
|
||||||
|
print(filenames)
|
||||||
|
tmpdir = tempfile.mkdtemp()
|
||||||
|
|
||||||
|
def cleanup() -> None:
|
||||||
|
shutil.rmtree(tmpdir)
|
||||||
|
|
||||||
|
request.addfinalizer(cleanup)
|
||||||
|
|
||||||
|
print(tmpdir)
|
||||||
|
for f in filenames:
|
||||||
|
fbase, _ = os.path.splitext(f)
|
||||||
|
for ext in [".h5", ".pkl.gz"]:
|
||||||
|
dest = os.path.join(tmpdir, f"{basename(fbase)}{ext}")
|
||||||
|
print(dest)
|
||||||
|
shutil.copy(f"{fbase}{ext}", dest)
|
||||||
|
assert isfile(dest)
|
||||||
|
return sorted(glob(f"{tmpdir}/*.h5"))
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
@pytest.fixture()
|
||||||
def tsp_h5() -> List[str]:
|
def multiknapsack_h5(request: Any) -> List[str]:
|
||||||
return sorted(glob(f"{dirname(__file__)}/fixtures/tsp-n20*.h5"))
|
return _h5_fixture("multiknapsack*.h5", request)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture()
|
||||||
|
def tsp_h5(request: Any) -> List[str]:
|
||||||
|
return _h5_fixture("tsp*.h5", request)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture()
|
||||||
|
def stab_h5(request: Any) -> List[str]:
|
||||||
|
return _h5_fixture("stab*.h5", request)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
@pytest.fixture()
|
||||||
|
|||||||
23
tests/fixtures/gen_stab.py
vendored
Normal file
23
tests/fixtures/gen_stab.py
vendored
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
from os.path import dirname
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import uniform, randint
|
||||||
|
|
||||||
|
from miplearn.collectors.basic import BasicCollector
|
||||||
|
from miplearn.io import write_pkl_gz
|
||||||
|
from miplearn.problems.stab import (
|
||||||
|
MaxWeightStableSetGenerator,
|
||||||
|
build_stab_model,
|
||||||
|
)
|
||||||
|
|
||||||
|
np.random.seed(42)
|
||||||
|
gen = MaxWeightStableSetGenerator(
|
||||||
|
w=uniform(10.0, scale=1.0),
|
||||||
|
n=randint(low=50, high=51),
|
||||||
|
p=uniform(loc=0.5, scale=0.0),
|
||||||
|
fix_graph=True,
|
||||||
|
)
|
||||||
|
data = gen.generate(3)
|
||||||
|
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="stab-n50-")
|
||||||
|
collector = BasicCollector()
|
||||||
|
collector.collect(data_filenames, build_stab_model)
|
||||||
BIN
tests/fixtures/stab-n50-00000.h5
vendored
Normal file
BIN
tests/fixtures/stab-n50-00000.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00000.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00000.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.h5
vendored
Normal file
BIN
tests/fixtures/stab-n50-00001.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00001.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00001.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.h5
vendored
Normal file
BIN
tests/fixtures/stab-n50-00002.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00002.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-n50-00002.pkl.gz
vendored
Normal file
Binary file not shown.
@@ -9,8 +9,7 @@ import numpy as np
|
|||||||
from miplearn.h5 import H5File
|
from miplearn.h5 import H5File
|
||||||
from miplearn.problems.stab import (
|
from miplearn.problems.stab import (
|
||||||
MaxWeightStableSetData,
|
MaxWeightStableSetData,
|
||||||
build_stab_model_pyomo,
|
build_stab_model,
|
||||||
build_stab_model_gurobipy,
|
|
||||||
)
|
)
|
||||||
from miplearn.solvers.abstract import AbstractModel
|
from miplearn.solvers.abstract import AbstractModel
|
||||||
|
|
||||||
@@ -21,8 +20,7 @@ def test_stab() -> None:
|
|||||||
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
|
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
|
||||||
)
|
)
|
||||||
for model in [
|
for model in [
|
||||||
build_stab_model_pyomo(data),
|
build_stab_model(data),
|
||||||
build_stab_model_gurobipy(data),
|
|
||||||
]:
|
]:
|
||||||
assert isinstance(model, AbstractModel)
|
assert isinstance(model, AbstractModel)
|
||||||
with NamedTemporaryFile() as tempfile:
|
with NamedTemporaryFile() as tempfile:
|
||||||
|
|||||||
@@ -39,6 +39,6 @@ def _build_model() -> PyomoModel:
|
|||||||
def test_pyomo_callback() -> None:
|
def test_pyomo_callback() -> None:
|
||||||
model = _build_model()
|
model = _build_model()
|
||||||
model.optimize()
|
model.optimize()
|
||||||
assert model.lazy_constrs_ is not None
|
assert model.lazy_ is not None
|
||||||
assert len(model.lazy_constrs_) > 0
|
assert len(model.lazy_) > 0
|
||||||
assert model.inner.x.value == 0.0
|
assert model.inner.x.value == 0.0
|
||||||
|
|||||||
Reference in New Issue
Block a user