mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Make get_variable_{categories,features} return np.ndarray
This commit is contained in:
@@ -9,7 +9,7 @@ from p_tqdm import p_umap
|
||||
|
||||
from miplearn.features.sample import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
from miplearn.types import LearningSolveStats, Category
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
@@ -101,8 +101,8 @@ class Component:
|
||||
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[str, np.ndarray],
|
||||
y: Dict[str, np.ndarray],
|
||||
x: Dict[Category, np.ndarray],
|
||||
y: Dict[Category, np.ndarray],
|
||||
) -> None:
|
||||
"""
|
||||
Given two dictionaries x and y, mapping the name of the category to matrices
|
||||
|
||||
@@ -47,8 +47,8 @@ class PrimalSolutionComponent(Component):
|
||||
assert isinstance(threshold, Threshold)
|
||||
assert mode in ["exact", "heuristic"]
|
||||
self.mode = mode
|
||||
self.classifiers: Dict[str, Classifier] = {}
|
||||
self.thresholds: Dict[str, Threshold] = {}
|
||||
self.classifiers: Dict[Category, Classifier] = {}
|
||||
self.thresholds: Dict[Category, Threshold] = {}
|
||||
self.threshold_prototype = threshold
|
||||
self.classifier_prototype = classifier
|
||||
|
||||
@@ -96,7 +96,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
def sample_predict(self, sample: Sample) -> Solution:
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_vector("static_var_categories")
|
||||
var_categories = sample.get_array("static_var_categories")
|
||||
assert var_names is not None
|
||||
assert var_categories is not None
|
||||
|
||||
@@ -120,7 +120,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Convert y_pred into solution
|
||||
solution: Solution = {v: None for v in var_names}
|
||||
category_offset: Dict[str, int] = {cat: 0 for cat in x.keys()}
|
||||
category_offset: Dict[Category, int] = {cat: 0 for cat in x.keys()}
|
||||
for (i, var_name) in enumerate(var_names):
|
||||
category = var_categories[i]
|
||||
if category not in category_offset:
|
||||
@@ -146,7 +146,7 @@ class PrimalSolutionComponent(Component):
|
||||
mip_var_values = sample.get_array("mip_var_values")
|
||||
var_features = sample.get_vector_list("lp_var_features")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_vector("static_var_categories")
|
||||
var_categories = sample.get_array("static_var_categories")
|
||||
if var_features is None:
|
||||
var_features = sample.get_vector_list("static_var_features")
|
||||
assert instance_features is not None
|
||||
@@ -157,7 +157,7 @@ class PrimalSolutionComponent(Component):
|
||||
for (i, var_name) in enumerate(var_names):
|
||||
# Initialize categories
|
||||
category = var_categories[i]
|
||||
if category is None:
|
||||
if len(category) == 0:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
x[category] = []
|
||||
@@ -176,7 +176,7 @@ class PrimalSolutionComponent(Component):
|
||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
||||
"optimal solution. Predicting values of non-binary "
|
||||
"variables is not currently supported. Please set its "
|
||||
"category to None."
|
||||
"category to ''."
|
||||
)
|
||||
y[category].append([opt_value < 0.5, opt_value >= 0.5])
|
||||
return x, y
|
||||
@@ -230,8 +230,8 @@ class PrimalSolutionComponent(Component):
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[str, np.ndarray],
|
||||
y: Dict[str, np.ndarray],
|
||||
x: Dict[Category, np.ndarray],
|
||||
y: Dict[Category, np.ndarray],
|
||||
) -> None:
|
||||
for category in x.keys():
|
||||
clf = self.classifier_prototype.clone()
|
||||
|
||||
@@ -46,20 +46,25 @@ class FeaturesExtractor:
|
||||
vars_features_user, var_categories = self._extract_user_features_vars(
|
||||
instance, sample
|
||||
)
|
||||
sample.put_vector("static_var_categories", var_categories)
|
||||
sample.put_array("static_var_categories", var_categories)
|
||||
self._extract_user_features_constrs(instance, sample)
|
||||
self._extract_user_features_instance(instance, sample)
|
||||
alw17 = self._extract_var_features_AlvLouWeh2017(sample)
|
||||
sample.put_vector_list(
|
||||
|
||||
# Build static_var_features
|
||||
assert variables.lower_bounds is not None
|
||||
assert variables.obj_coeffs is not None
|
||||
assert variables.upper_bounds is not None
|
||||
sample.put_array(
|
||||
"static_var_features",
|
||||
self._combine(
|
||||
np.hstack(
|
||||
[
|
||||
alw17,
|
||||
vars_features_user,
|
||||
sample.get_array("static_var_lower_bounds"),
|
||||
sample.get_array("static_var_obj_coeffs"),
|
||||
sample.get_array("static_var_upper_bounds"),
|
||||
],
|
||||
alw17,
|
||||
variables.lower_bounds.reshape(-1, 1),
|
||||
variables.obj_coeffs.reshape(-1, 1),
|
||||
variables.upper_bounds.reshape(-1, 1),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
@@ -88,23 +93,29 @@ class FeaturesExtractor:
|
||||
sample.put_array("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
|
||||
sample.put_array("lp_constr_slacks", constraints.slacks)
|
||||
alw17 = self._extract_var_features_AlvLouWeh2017(sample)
|
||||
sample.put_vector_list(
|
||||
"lp_var_features",
|
||||
self._combine(
|
||||
[
|
||||
|
||||
# Build lp_var_features
|
||||
lp_var_features_list = []
|
||||
for f in [
|
||||
sample.get_array("static_var_features"),
|
||||
alw17,
|
||||
sample.get_array("lp_var_reduced_costs"),
|
||||
sample.get_array("lp_var_sa_lb_down"),
|
||||
sample.get_array("lp_var_sa_lb_up"),
|
||||
sample.get_array("lp_var_sa_obj_down"),
|
||||
sample.get_array("lp_var_sa_obj_up"),
|
||||
sample.get_array("lp_var_sa_ub_down"),
|
||||
sample.get_array("lp_var_sa_ub_up"),
|
||||
sample.get_array("lp_var_values"),
|
||||
sample.get_vector_list("static_var_features"),
|
||||
],
|
||||
),
|
||||
)
|
||||
]:
|
||||
if f is not None:
|
||||
lp_var_features_list.append(f)
|
||||
for f in [
|
||||
variables.reduced_costs,
|
||||
variables.sa_lb_down,
|
||||
variables.sa_lb_up,
|
||||
variables.sa_obj_down,
|
||||
variables.sa_obj_up,
|
||||
variables.sa_ub_down,
|
||||
variables.sa_ub_up,
|
||||
variables.values,
|
||||
]:
|
||||
if f is not None:
|
||||
lp_var_features_list.append(f.reshape(-1, 1))
|
||||
sample.put_array("lp_var_features", np.hstack(lp_var_features_list))
|
||||
|
||||
sample.put_vector_list(
|
||||
"lp_constr_features",
|
||||
self._combine(
|
||||
@@ -148,60 +159,49 @@ class FeaturesExtractor:
|
||||
self,
|
||||
instance: "Instance",
|
||||
sample: Sample,
|
||||
) -> Tuple[List, List]:
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
# Query variable names
|
||||
var_names = sample.get_array("static_var_names")
|
||||
assert var_names is not None
|
||||
|
||||
# Query variable features and categories
|
||||
var_features_dict = {
|
||||
v.encode(): f for (v, f) in instance.get_variable_features().items()
|
||||
}
|
||||
var_categories_dict = {
|
||||
v.encode(): f for (v, f) in instance.get_variable_categories().items()
|
||||
}
|
||||
# Query variable features
|
||||
var_features = instance.get_variable_features(var_names)
|
||||
assert isinstance(var_features, np.ndarray), (
|
||||
f"Variable features must be a numpy array. "
|
||||
f"Found {var_features.__class__} instead."
|
||||
)
|
||||
assert len(var_features.shape) == 2, (
|
||||
f"Variable features must be 2-dimensional array. "
|
||||
f"Found array with shape {var_features.shape} instead."
|
||||
)
|
||||
assert var_features.shape[0] == len(var_names), (
|
||||
f"Variable features must have exactly {len(var_names)} rows. "
|
||||
f"Found {var_features.shape[0]} rows instead."
|
||||
)
|
||||
assert var_features.dtype.kind in ["f"], (
|
||||
f"Variable features must be floating point numbers. "
|
||||
f"Found dtype: {var_features.dtype} instead."
|
||||
)
|
||||
|
||||
# Assert that variables in user-provided dicts actually exist
|
||||
var_names_set = set(var_names)
|
||||
for keys in [var_features_dict.keys(), var_categories_dict.keys()]:
|
||||
for vn in cast(KeysView, keys):
|
||||
assert (
|
||||
vn in var_names_set
|
||||
), f"Variable {vn!r} not found in the problem; {var_names_set}"
|
||||
|
||||
# Assemble into compact lists
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
categories: List[Optional[str]] = []
|
||||
for (i, var_name) in enumerate(var_names):
|
||||
if var_name not in var_categories_dict:
|
||||
user_features.append(None)
|
||||
categories.append(None)
|
||||
continue
|
||||
category: str = var_categories_dict[var_name]
|
||||
assert isinstance(category, str), (
|
||||
f"Variable category must be a string. "
|
||||
f"Found {type(category).__name__} instead for var={var_name}."
|
||||
# Query variable categories
|
||||
var_categories = instance.get_variable_categories(var_names)
|
||||
assert isinstance(var_categories, np.ndarray), (
|
||||
f"Variable categories must be a numpy array. "
|
||||
f"Found {var_categories.__class__} instead."
|
||||
)
|
||||
categories.append(category)
|
||||
user_features_i: Optional[List[float]] = None
|
||||
if var_name in var_features_dict:
|
||||
user_features_i = var_features_dict[var_name]
|
||||
if isinstance(user_features_i, np.ndarray):
|
||||
user_features_i = user_features_i.tolist()
|
||||
assert isinstance(user_features_i, list), (
|
||||
f"Variable features must be a list. "
|
||||
f"Found {type(user_features_i).__name__} instead for "
|
||||
f"var={var_name}."
|
||||
assert len(var_categories.shape) == 1, (
|
||||
f"Variable categories must be a vector. "
|
||||
f"Found array with shape {var_categories.shape} instead."
|
||||
)
|
||||
for v in user_features_i:
|
||||
assert isinstance(v, numbers.Real), (
|
||||
f"Variable features must be a list of numbers. "
|
||||
f"Found {type(v).__name__} instead "
|
||||
f"for var={var_name}."
|
||||
assert len(var_categories) == len(var_names), (
|
||||
f"Variable categories must have exactly {len(var_names)} elements. "
|
||||
f"Found {var_features.shape[0]} elements instead."
|
||||
)
|
||||
user_features_i = list(user_features_i)
|
||||
user_features.append(user_features_i)
|
||||
return user_features, categories
|
||||
assert var_categories.dtype.kind == "S", (
|
||||
f"Variable categories must be a numpy array with dtype='S'. "
|
||||
f"Found {var_categories.dtype} instead."
|
||||
)
|
||||
return var_features, var_categories
|
||||
|
||||
def _extract_user_features_constrs(
|
||||
self,
|
||||
@@ -277,7 +277,7 @@ class FeaturesExtractor:
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
def _extract_var_features_AlvLouWeh2017(self, sample: Sample) -> List:
|
||||
def _extract_var_features_AlvLouWeh2017(self, sample: Sample) -> np.ndarray:
|
||||
obj_coeffs = sample.get_array("static_var_obj_coeffs")
|
||||
obj_sa_down = sample.get_array("lp_var_sa_obj_down")
|
||||
obj_sa_up = sample.get_array("lp_var_sa_obj_up")
|
||||
@@ -351,7 +351,7 @@ class FeaturesExtractor:
|
||||
f[i] = 0.0
|
||||
|
||||
features.append(f)
|
||||
return features
|
||||
return np.array(features, dtype=float)
|
||||
|
||||
def _combine(
|
||||
self,
|
||||
|
||||
@@ -63,7 +63,7 @@ class Instance(ABC):
|
||||
"""
|
||||
return np.zeros(1)
|
||||
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Returns dictionary mapping the name of each variable to a (1-dimensional) list
|
||||
of numerical features describing a particular decision variable.
|
||||
@@ -81,11 +81,11 @@ class Instance(ABC):
|
||||
If features are not provided for a given variable, MIPLearn will use a
|
||||
default set of features.
|
||||
|
||||
By default, returns {}.
|
||||
By default, returns [[0.0], ..., [0.0]].
|
||||
"""
|
||||
return {}
|
||||
return np.zeros((len(names), 1))
|
||||
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Returns a dictionary mapping the name of each variable to its category.
|
||||
|
||||
@@ -93,9 +93,9 @@ class Instance(ABC):
|
||||
internal ML model to predict the values of both variables. If a variable is not
|
||||
listed in the dictionary, ML models will ignore the variable.
|
||||
|
||||
By default, returns {}.
|
||||
By default, returns `names`.
|
||||
"""
|
||||
return {}
|
||||
return names
|
||||
|
||||
def get_constraint_features(self) -> Dict[str, List[float]]:
|
||||
return {}
|
||||
|
||||
@@ -36,14 +36,14 @@ class FileInstance(Instance):
|
||||
return self.instance.get_instance_features()
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_features()
|
||||
return self.instance.get_variable_features(names)
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_categories()
|
||||
return self.instance.get_variable_categories(names)
|
||||
|
||||
@overrides
|
||||
def get_constraint_features(self) -> Dict[str, List[float]]:
|
||||
|
||||
@@ -48,14 +48,14 @@ class PickleGzInstance(Instance):
|
||||
return self.instance.get_instance_features()
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_features()
|
||||
return self.instance.get_variable_features(names)
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_categories()
|
||||
return self.instance.get_variable_categories(names)
|
||||
|
||||
@overrides
|
||||
def get_constraint_features(self) -> Dict[str, List[float]]:
|
||||
|
||||
@@ -98,11 +98,13 @@ class MultiKnapsackInstance(Instance):
|
||||
return np.array([float(np.mean(self.prices))] + list(self.capacities))
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
return {
|
||||
f"x[{i}]": [self.prices[i] + list(self.weights[:, i])]
|
||||
for i in range(self.n)
|
||||
}
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
features = []
|
||||
for i in range(len(self.weights)):
|
||||
f = [self.prices[i]]
|
||||
f.extend(self.weights[:, i])
|
||||
features.append(f)
|
||||
return np.array(features)
|
||||
|
||||
|
||||
# noinspection PyPep8Naming
|
||||
|
||||
@@ -66,9 +66,11 @@ class MaxWeightStableSetInstance(Instance):
|
||||
return model
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
features = {}
|
||||
for v1 in self.nodes:
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
features = []
|
||||
assert len(names) == len(self.nodes)
|
||||
for i, v1 in enumerate(self.nodes):
|
||||
assert names[i] == f"x[{v1}]".encode()
|
||||
neighbor_weights = [0.0] * 15
|
||||
neighbor_degrees = [100.0] * 15
|
||||
for v2 in self.graph.neighbors(v1):
|
||||
@@ -80,12 +82,12 @@ class MaxWeightStableSetInstance(Instance):
|
||||
f += neighbor_weights[:5]
|
||||
f += neighbor_degrees[:5]
|
||||
f += [self.graph.degree(v1)]
|
||||
features[f"x[{v1}]"] = f
|
||||
return features
|
||||
features.append(f)
|
||||
return np.array(features)
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
return {f"x[{v}]": "default" for v in self.nodes}
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
return np.array(["default" for _ in names], dtype="S")
|
||||
|
||||
|
||||
class MaxWeightStableSetGenerator:
|
||||
|
||||
@@ -80,10 +80,6 @@ class TravelingSalesmanInstance(Instance):
|
||||
)
|
||||
return model
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
return {f"x[{e}]": f"x[{e}]" for e in self.edges}
|
||||
|
||||
@overrides
|
||||
def find_violated_lazy_constraints(
|
||||
self,
|
||||
|
||||
@@ -605,6 +605,7 @@ class PyomoTestInstanceKnapsack(Instance):
|
||||
self.weights = weights
|
||||
self.prices = prices
|
||||
self.capacity = capacity
|
||||
self.n = len(weights)
|
||||
|
||||
@overrides
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
@@ -631,15 +632,17 @@ class PyomoTestInstanceKnapsack(Instance):
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self) -> Dict[str, List[float]]:
|
||||
return {
|
||||
f"x[{i}]": [
|
||||
self.weights[i],
|
||||
self.prices[i],
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
return np.vstack(
|
||||
[
|
||||
[[self.weights[i], self.prices[i]] for i in range(self.n)],
|
||||
[0.0, 0.0],
|
||||
]
|
||||
for i in range(len(self.weights))
|
||||
}
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self) -> Dict[str, str]:
|
||||
return {f"x[{i}]": "default" for i in range(len(self.weights))}
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
return np.array(
|
||||
["default" if n.decode().startswith("x") else "" for n in names],
|
||||
dtype="S",
|
||||
)
|
||||
|
||||
@@ -10,7 +10,7 @@ if TYPE_CHECKING:
|
||||
# noinspection PyUnresolvedReferences
|
||||
from miplearn.solvers.learning import InternalSolver
|
||||
|
||||
Category = str
|
||||
Category = bytes
|
||||
IterationCallback = Callable[[], bool]
|
||||
LazyCallback = Callable[[Any, Any], None]
|
||||
SolverParams = Dict[str, Any]
|
||||
|
||||
@@ -23,21 +23,28 @@ def sample() -> Sample:
|
||||
sample = MemorySample(
|
||||
{
|
||||
"static_var_names": np.array(["x[0]", "x[1]", "x[2]", "x[3]"], dtype="S"),
|
||||
"static_var_categories": ["default", None, "default", "default"],
|
||||
"static_var_categories": np.array(
|
||||
["default", "", "default", "default"],
|
||||
dtype="S",
|
||||
),
|
||||
"mip_var_values": np.array([0.0, 1.0, 1.0, 0.0]),
|
||||
"static_instance_features": [5.0],
|
||||
"static_var_features": [
|
||||
"static_instance_features": np.array([5.0]),
|
||||
"static_var_features": np.array(
|
||||
[
|
||||
[0.0, 0.0],
|
||||
[0.0, 0.0],
|
||||
None,
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
],
|
||||
"lp_var_features": [
|
||||
]
|
||||
),
|
||||
"lp_var_features": np.array(
|
||||
[
|
||||
[0.0, 0.0, 2.0, 2.0],
|
||||
None,
|
||||
[0.0, 0.0, 0.0, 0.0],
|
||||
[1.0, 0.0, 3.0, 2.0],
|
||||
[1.0, 1.0, 3.0, 3.0],
|
||||
],
|
||||
]
|
||||
),
|
||||
},
|
||||
)
|
||||
return sample
|
||||
@@ -45,14 +52,14 @@ def sample() -> Sample:
|
||||
|
||||
def test_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
"default": [
|
||||
b"default": [
|
||||
[5.0, 0.0, 0.0, 2.0, 2.0],
|
||||
[5.0, 1.0, 0.0, 3.0, 2.0],
|
||||
[5.0, 1.0, 1.0, 3.0, 3.0],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
"default": [
|
||||
b"default": [
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
@@ -72,15 +79,15 @@ def test_fit_xy() -> None:
|
||||
thr.clone = lambda: Mock(spec=Threshold)
|
||||
comp = PrimalSolutionComponent(classifier=clf, threshold=thr)
|
||||
x = {
|
||||
"type-a": np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
|
||||
"type-b": np.array([[7.0, 8.0, 9.0]]),
|
||||
b"type-a": np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
|
||||
b"type-b": np.array([[7.0, 8.0, 9.0]]),
|
||||
}
|
||||
y = {
|
||||
"type-a": np.array([[True, False], [False, True]]),
|
||||
"type-b": np.array([[True, False]]),
|
||||
b"type-a": np.array([[True, False], [False, True]]),
|
||||
b"type-b": np.array([[True, False]]),
|
||||
}
|
||||
comp.fit_xy(x, y)
|
||||
for category in ["type-a", "type-b"]:
|
||||
for category in [b"type-a", b"type-b"]:
|
||||
assert category in comp.classifiers
|
||||
assert category in comp.thresholds
|
||||
clf = comp.classifiers[category] # type: ignore
|
||||
@@ -142,13 +149,13 @@ def test_predict(sample: Sample) -> None:
|
||||
thr.predict = Mock(return_value=[0.75, 0.75])
|
||||
comp = PrimalSolutionComponent()
|
||||
x, _ = comp.sample_xy(None, sample)
|
||||
comp.classifiers = {"default": clf}
|
||||
comp.thresholds = {"default": thr}
|
||||
comp.classifiers = {b"default": clf}
|
||||
comp.thresholds = {b"default": thr}
|
||||
pred = comp.sample_predict(sample)
|
||||
clf.predict_proba.assert_called_once()
|
||||
thr.predict.assert_called_once()
|
||||
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
||||
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
||||
assert_array_equal(x[b"default"], clf.predict_proba.call_args[0][0])
|
||||
assert_array_equal(x[b"default"], thr.predict.call_args[0][0])
|
||||
assert pred == {
|
||||
b"x[0]": 0.0,
|
||||
b"x[1]": None,
|
||||
|
||||
@@ -49,8 +49,8 @@ def test_knapsack() -> None:
|
||||
sample.get_vector("static_var_upper_bounds"), [1.0, 1.0, 1.0, 1.0, 67.0]
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector("static_var_categories"),
|
||||
["default", "default", "default", "default", None],
|
||||
sample.get_array("static_var_categories"),
|
||||
np.array(["default", "default", "default", "default", ""], dtype="S"),
|
||||
)
|
||||
assert sample.get_vector_list("static_var_features") is not None
|
||||
assert_equals(
|
||||
|
||||
Reference in New Issue
Block a user