mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Minor fixes to docs and setup.py
This commit is contained in:
@@ -33,6 +33,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "02f0a927",
|
||||
"metadata": {},
|
||||
@@ -44,53 +45,17 @@
|
||||
"- Python version, compatible with the Pyomo and Gurobipy modeling languages,\n",
|
||||
"- Julia version, compatible with the JuMP modeling language.\n",
|
||||
"\n",
|
||||
"In this tutorial, we will demonstrate how to use and install the Python/Gurobipy version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cd8a69c1",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-06T20:18:02.381829278Z",
|
||||
"start_time": "2023-06-06T20:18:02.381532300Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install MIPLearn==0.3.0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e8274543",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "dcc8756c",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-06T20:18:15.537811992Z",
|
||||
"start_time": "2023-06-06T20:18:13.449177860Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: gurobipy<10.1,>=10 in /home/axavier/Software/anaconda3/envs/miplearn/lib/python3.8/site-packages (10.0.1)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install 'gurobipy>=10,<10.1'"
|
||||
"In this tutorial, we will demonstrate how to use and install the Python/Gurobipy version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"$ pip install MIPLearn==0.3\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems.\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"$ pip install 'gurobipy>=10,<10.1'\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -214,6 +179,7 @@
|
||||
"from miplearn.io import read_pkl_gz\n",
|
||||
"from miplearn.solvers.gurobi import GurobiModel\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def build_uc_model(data: Union[str, UnitCommitmentData]) -> GurobiModel:\n",
|
||||
" if isinstance(data, str):\n",
|
||||
" data = read_pkl_gz(data)\n",
|
||||
@@ -223,9 +189,7 @@
|
||||
" x = model._x = model.addVars(n, vtype=GRB.BINARY, name=\"x\")\n",
|
||||
" y = model._y = model.addVars(n, name=\"y\")\n",
|
||||
" model.setObjective(\n",
|
||||
" quicksum(\n",
|
||||
" data.cfix[i] * x[i] + data.cvar[i] * y[i] for i in range(n)\n",
|
||||
" )\n",
|
||||
" quicksum(data.cfix[i] * x[i] + data.cvar[i] * y[i] for i in range(n))\n",
|
||||
" )\n",
|
||||
" model.addConstrs(y[i] <= data.pmax[i] * x[i] for i in range(n))\n",
|
||||
" model.addConstrs(y[i] >= data.pmin[i] * x[i] for i in range(n))\n",
|
||||
@@ -588,7 +552,7 @@
|
||||
"\n",
|
||||
"solver_ml = LearningSolver(components=[comp])\n",
|
||||
"solver_ml.fit(train_data)\n",
|
||||
"solver_ml.optimize(test_data[0], build_uc_model);"
|
||||
"solver_ml.optimize(test_data[0], build_uc_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -690,7 +654,7 @@
|
||||
"source": [
|
||||
"solver_baseline = LearningSolver(components=[])\n",
|
||||
"solver_baseline.fit(train_data)\n",
|
||||
"solver_baseline.optimize(test_data[0], build_uc_model);"
|
||||
"solver_baseline.optimize(test_data[0], build_uc_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -33,6 +33,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "02f0a927",
|
||||
"metadata": {},
|
||||
@@ -44,53 +45,17 @@
|
||||
"- Python version, compatible with the Pyomo and Gurobipy modeling languages,\n",
|
||||
"- Julia version, compatible with the JuMP modeling language.\n",
|
||||
"\n",
|
||||
"In this tutorial, we will demonstrate how to use and install the Python/Pyomo version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cd8a69c1",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-06T19:57:33.202580815Z",
|
||||
"start_time": "2023-06-06T19:57:33.198341886Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install MIPLearn==0.3.0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e8274543",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "dcc8756c",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-06T19:57:35.756831801Z",
|
||||
"start_time": "2023-06-06T19:57:33.201767088Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: gurobipy<10.1,>=10 in /home/axavier/Software/anaconda3/envs/miplearn/lib/python3.8/site-packages (10.0.1)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install 'gurobipy>=10,<10.1'"
|
||||
"In this tutorial, we will demonstrate how to use and install the Python/Pyomo version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"$ pip install MIPLearn==0.3\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems.\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"$ pip install 'gurobipy>=10,<10.1'\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -600,7 +565,7 @@
|
||||
"\n",
|
||||
"solver_ml = LearningSolver(components=[comp])\n",
|
||||
"solver_ml.fit(train_data)\n",
|
||||
"solver_ml.optimize(test_data[0], build_uc_model);"
|
||||
"solver_ml.optimize(test_data[0], build_uc_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -706,7 +671,7 @@
|
||||
"source": [
|
||||
"solver_baseline = LearningSolver(components=[])\n",
|
||||
"solver_baseline.fit(train_data)\n",
|
||||
"solver_baseline.optimize(test_data[0], build_uc_model);"
|
||||
"solver_baseline.optimize(test_data[0], build_uc_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user