Implement BenchmarkRunner

This commit is contained in:
2020-01-23 21:59:59 -06:00
parent 07090bac9e
commit 8f141e6a9d
10 changed files with 161 additions and 29 deletions

View File

@@ -0,0 +1,41 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver, BenchmarkRunner
from miplearn.warmstart import KnnWarmStartPredictor
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
import networkx as nx
import numpy as np
import pyomo.environ as pe
def test_benchmark():
graph = nx.cycle_graph(10)
base_weights = np.random.rand(10)
# Generate training and test instances
train_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(5)
test_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.save("data.bin")
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(ws_predictor=None),
"Strategy B": LearningSolver(ws_predictor=None),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_fit("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2)
print(benchmark.raw_results())

View File

@@ -38,6 +38,6 @@ def test_parallel_solve():
capacity=3.0)
for _ in range(10)]
solver = LearningSolver()
solver.parallel_solve(instances, n_jobs=2)
solver.parallel_solve(instances, n_jobs=3)
assert len(solver.x_train[0]) == 10
assert len(solver.y_train[0]) == 10

View File

@@ -20,10 +20,10 @@ def test_stab():
def test_stab_generator():
graph = nx.cycle_graph(5)
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
generator = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0)
instances = [generator.generate() for _ in range(100_000)]
instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(100_000)
weights = np.array([instance.weights for instance in instances])
weights_avg = np.round(np.average(weights, axis=0), 2)
weights_std = np.round(np.std(weights, axis=0), 2)