mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement BenchmarkRunner
This commit is contained in:
41
miplearn/tests/test_benchmark.py
Normal file
41
miplearn/tests/test_benchmark.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver, BenchmarkRunner
|
||||
from miplearn.warmstart import KnnWarmStartPredictor
|
||||
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
|
||||
def test_benchmark():
|
||||
graph = nx.cycle_graph(10)
|
||||
base_weights = np.random.rand(10)
|
||||
|
||||
# Generate training and test instances
|
||||
train_instances = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0,
|
||||
).generate(5)
|
||||
|
||||
test_instances = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0,
|
||||
).generate(3)
|
||||
|
||||
# Training phase...
|
||||
training_solver = LearningSolver()
|
||||
training_solver.parallel_solve(train_instances, n_jobs=10)
|
||||
training_solver.save("data.bin")
|
||||
|
||||
# Test phase...
|
||||
test_solvers = {
|
||||
"Strategy A": LearningSolver(ws_predictor=None),
|
||||
"Strategy B": LearningSolver(ws_predictor=None),
|
||||
}
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_fit("data.bin")
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2)
|
||||
print(benchmark.raw_results())
|
||||
@@ -38,6 +38,6 @@ def test_parallel_solve():
|
||||
capacity=3.0)
|
||||
for _ in range(10)]
|
||||
solver = LearningSolver()
|
||||
solver.parallel_solve(instances, n_jobs=2)
|
||||
solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(solver.x_train[0]) == 10
|
||||
assert len(solver.y_train[0]) == 10
|
||||
@@ -20,10 +20,10 @@ def test_stab():
|
||||
def test_stab_generator():
|
||||
graph = nx.cycle_graph(5)
|
||||
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
||||
generator = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0)
|
||||
instances = [generator.generate() for _ in range(100_000)]
|
||||
instances = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0,
|
||||
).generate(100_000)
|
||||
weights = np.array([instance.weights for instance in instances])
|
||||
weights_avg = np.round(np.average(weights, axis=0), 2)
|
||||
weights_std = np.round(np.std(weights, axis=0), 2)
|
||||
|
||||
Reference in New Issue
Block a user