mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
Split Sample.{get,put} into {get,put}_{scalar,vector}
This commit is contained in:
@@ -33,15 +33,15 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
variables = solver.get_variables(with_static=True)
|
||||
constraints = solver.get_constraints(with_static=True, with_lhs=self.with_lhs)
|
||||
sample.put("var_lower_bounds", variables.lower_bounds)
|
||||
sample.put("var_names", variables.names)
|
||||
sample.put("var_obj_coeffs", variables.obj_coeffs)
|
||||
sample.put("var_types", variables.types)
|
||||
sample.put("var_upper_bounds", variables.upper_bounds)
|
||||
sample.put("constr_names", constraints.names)
|
||||
sample.put_vector("var_lower_bounds", variables.lower_bounds)
|
||||
sample.put_vector("var_names", variables.names)
|
||||
sample.put_vector("var_obj_coeffs", variables.obj_coeffs)
|
||||
sample.put_vector("var_types", variables.types)
|
||||
sample.put_vector("var_upper_bounds", variables.upper_bounds)
|
||||
sample.put_vector("constr_names", constraints.names)
|
||||
sample.put("constr_lhs", constraints.lhs)
|
||||
sample.put("constr_rhs", constraints.rhs)
|
||||
sample.put("constr_senses", constraints.senses)
|
||||
sample.put_vector("constr_rhs", constraints.rhs)
|
||||
sample.put_vector("constr_senses", constraints.senses)
|
||||
self._extract_user_features_vars(instance, sample)
|
||||
self._extract_user_features_constrs(instance, sample)
|
||||
self._extract_user_features_instance(instance, sample)
|
||||
@@ -67,20 +67,20 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
variables = solver.get_variables(with_static=False, with_sa=self.with_sa)
|
||||
constraints = solver.get_constraints(with_static=False, with_sa=self.with_sa)
|
||||
sample.put("lp_var_basis_status", variables.basis_status)
|
||||
sample.put("lp_var_reduced_costs", variables.reduced_costs)
|
||||
sample.put("lp_var_sa_lb_down", variables.sa_lb_down)
|
||||
sample.put("lp_var_sa_lb_up", variables.sa_lb_up)
|
||||
sample.put("lp_var_sa_obj_down", variables.sa_obj_down)
|
||||
sample.put("lp_var_sa_obj_up", variables.sa_obj_up)
|
||||
sample.put("lp_var_sa_ub_down", variables.sa_ub_down)
|
||||
sample.put("lp_var_sa_ub_up", variables.sa_ub_up)
|
||||
sample.put("lp_var_values", variables.values)
|
||||
sample.put("lp_constr_basis_status", constraints.basis_status)
|
||||
sample.put("lp_constr_dual_values", constraints.dual_values)
|
||||
sample.put("lp_constr_sa_rhs_down", constraints.sa_rhs_down)
|
||||
sample.put("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
|
||||
sample.put("lp_constr_slacks", constraints.slacks)
|
||||
sample.put_vector("lp_var_basis_status", variables.basis_status)
|
||||
sample.put_vector("lp_var_reduced_costs", variables.reduced_costs)
|
||||
sample.put_vector("lp_var_sa_lb_down", variables.sa_lb_down)
|
||||
sample.put_vector("lp_var_sa_lb_up", variables.sa_lb_up)
|
||||
sample.put_vector("lp_var_sa_obj_down", variables.sa_obj_down)
|
||||
sample.put_vector("lp_var_sa_obj_up", variables.sa_obj_up)
|
||||
sample.put_vector("lp_var_sa_ub_down", variables.sa_ub_down)
|
||||
sample.put_vector("lp_var_sa_ub_up", variables.sa_ub_up)
|
||||
sample.put_vector("lp_var_values", variables.values)
|
||||
sample.put_vector("lp_constr_basis_status", constraints.basis_status)
|
||||
sample.put_vector("lp_constr_dual_values", constraints.dual_values)
|
||||
sample.put_vector("lp_constr_sa_rhs_down", constraints.sa_rhs_down)
|
||||
sample.put_vector("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
|
||||
sample.put_vector("lp_constr_slacks", constraints.slacks)
|
||||
self._extract_var_features_AlvLouWeh2017(sample, prefix="lp_")
|
||||
sample.put(
|
||||
"lp_var_features",
|
||||
@@ -134,8 +134,8 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
variables = solver.get_variables(with_static=False, with_sa=False)
|
||||
constraints = solver.get_constraints(with_static=False, with_sa=False)
|
||||
sample.put("mip_var_values", variables.values)
|
||||
sample.put("mip_constr_slacks", constraints.slacks)
|
||||
sample.put_vector("mip_var_values", variables.values)
|
||||
sample.put_vector("mip_constr_slacks", constraints.slacks)
|
||||
|
||||
def _extract_user_features_vars(
|
||||
self,
|
||||
@@ -228,7 +228,7 @@ class FeaturesExtractor:
|
||||
else:
|
||||
lazy.append(False)
|
||||
sample.put("constr_features_user", user_features)
|
||||
sample.put("constr_lazy", lazy)
|
||||
sample.put_vector("constr_lazy", lazy)
|
||||
sample.put("constr_categories", categories)
|
||||
|
||||
def _extract_user_features_instance(
|
||||
@@ -251,7 +251,7 @@ class FeaturesExtractor:
|
||||
constr_lazy = sample.get("constr_lazy")
|
||||
assert constr_lazy is not None
|
||||
sample.put("instance_features_user", user_features)
|
||||
sample.put("static_lazy_count", sum(constr_lazy))
|
||||
sample.put_scalar("static_lazy_count", sum(constr_lazy))
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
|
||||
Reference in New Issue
Block a user