mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
Implement BinPackPerturber
This commit is contained in:
@@ -34,19 +34,10 @@ class BinPackData:
|
||||
class BinPackGenerator:
|
||||
"""Random instance generator for the bin packing problem.
|
||||
|
||||
If `fix_items=False`, the class samples the user-provided probability distributions
|
||||
Generates instances by sampling the user-provided probability distributions
|
||||
n, sizes and capacity to decide, respectively, the number of items, the sizes of
|
||||
the items and capacity of the bin. All values are sampled independently.
|
||||
|
||||
If `fix_items=True`, the class creates a reference instance, using the method
|
||||
previously described, then generates additional instances by perturbing its item
|
||||
sizes and bin capacity. More specifically, the sizes of the items are set to `s_i
|
||||
* gamma_i` where `s_i` is the size of the i-th item in the reference instance and
|
||||
`gamma_i` is sampled from `sizes_jitter`. Similarly, the bin capacity is set to `B *
|
||||
beta`, where `B` is the reference bin capacity and `beta` is sampled from
|
||||
`capacity_jitter`. The number of items remains the same across all generated
|
||||
instances.
|
||||
|
||||
Args
|
||||
----
|
||||
n
|
||||
@@ -55,13 +46,6 @@ class BinPackGenerator:
|
||||
Probability distribution for the item sizes.
|
||||
capacity
|
||||
Probability distribution for the bin capacity.
|
||||
sizes_jitter
|
||||
Probability distribution for the item size randomization.
|
||||
capacity_jitter
|
||||
Probability distribution for the bin capacity.
|
||||
fix_items
|
||||
If `True`, generates a reference instance, then applies some perturbation to it.
|
||||
If `False`, generates completely different instances.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -69,17 +53,10 @@ class BinPackGenerator:
|
||||
n: rv_frozen,
|
||||
sizes: rv_frozen,
|
||||
capacity: rv_frozen,
|
||||
sizes_jitter: rv_frozen,
|
||||
capacity_jitter: rv_frozen,
|
||||
fix_items: bool,
|
||||
) -> None:
|
||||
self.n = n
|
||||
self.sizes = sizes
|
||||
self.capacity = capacity
|
||||
self.sizes_jitter = sizes_jitter
|
||||
self.capacity_jitter = capacity_jitter
|
||||
self.fix_items = fix_items
|
||||
self.ref_data: Optional[BinPackData] = None
|
||||
|
||||
def generate(self, n_samples: int) -> List[BinPackData]:
|
||||
"""Generates random instances.
|
||||
@@ -91,22 +68,62 @@ class BinPackGenerator:
|
||||
"""
|
||||
|
||||
def _sample() -> BinPackData:
|
||||
if self.ref_data is None:
|
||||
n = self.n.rvs()
|
||||
sizes = self.sizes.rvs(n)
|
||||
capacity = self.capacity.rvs()
|
||||
if self.fix_items:
|
||||
self.ref_data = BinPackData(sizes, capacity)
|
||||
else:
|
||||
n = self.ref_data.sizes.shape[0]
|
||||
sizes = self.ref_data.sizes
|
||||
capacity = self.ref_data.capacity
|
||||
|
||||
sizes = sizes * self.sizes_jitter.rvs(n)
|
||||
capacity = capacity * self.capacity_jitter.rvs()
|
||||
n = self.n.rvs()
|
||||
sizes = self.sizes.rvs(n)
|
||||
capacity = self.capacity.rvs()
|
||||
return BinPackData(sizes.round(2), capacity.round(2))
|
||||
|
||||
return [_sample() for n in range(n_samples)]
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
|
||||
class BinPackPerturber:
|
||||
"""Perturbation generator for existing bin packing instances.
|
||||
|
||||
Takes an existing BinPackData instance and generates new instances by perturbing
|
||||
its item sizes and bin capacity. The sizes of the items are set to `s_i * gamma_i`
|
||||
where `s_i` is the size of the i-th item in the reference instance and `gamma_i`
|
||||
is sampled from `sizes_jitter`. Similarly, the bin capacity is set to `B * beta`,
|
||||
where `B` is the reference bin capacity and `beta` is sampled from `capacity_jitter`.
|
||||
The number of items remains the same across all generated instances.
|
||||
|
||||
Args
|
||||
----
|
||||
sizes_jitter
|
||||
Probability distribution for the item size randomization.
|
||||
capacity_jitter
|
||||
Probability distribution for the bin capacity randomization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sizes_jitter: rv_frozen,
|
||||
capacity_jitter: rv_frozen,
|
||||
) -> None:
|
||||
self.sizes_jitter = sizes_jitter
|
||||
self.capacity_jitter = capacity_jitter
|
||||
|
||||
def perturb(
|
||||
self,
|
||||
instance: BinPackData,
|
||||
n_samples: int,
|
||||
) -> List[BinPackData]:
|
||||
"""Generates perturbed instances.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
instance
|
||||
The reference instance to perturb.
|
||||
n_samples
|
||||
Number of samples to generate.
|
||||
"""
|
||||
|
||||
def _sample() -> BinPackData:
|
||||
n = instance.sizes.shape[0]
|
||||
sizes = instance.sizes * self.sizes_jitter.rvs(n)
|
||||
capacity = instance.capacity * self.capacity_jitter.rvs()
|
||||
return BinPackData(sizes.round(2), capacity.round(2))
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
|
||||
def build_binpack_model_gurobipy(data: Union[str, BinPackData]) -> GurobiModel:
|
||||
|
||||
Reference in New Issue
Block a user