mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Add Component.xy and PrimalSolutionComponent.xy
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Union, TYPE_CHECKING
|
||||
from typing import Any, List, Union, TYPE_CHECKING, Tuple, Dict
|
||||
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.types import LearningSolveStats, TrainingSample
|
||||
@@ -12,6 +12,7 @@ if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
class Component(ABC):
|
||||
"""
|
||||
A Component is an object which adds functionality to a LearningSolver.
|
||||
@@ -135,6 +136,17 @@ class Component(ABC):
|
||||
) -> None:
|
||||
return
|
||||
|
||||
def xy(
|
||||
self,
|
||||
instance: Any,
|
||||
training_sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Given a training sample, returns a pair of x and y dictionaries containing,
|
||||
respectively, the matrices of ML features and the labels for the sample.
|
||||
"""
|
||||
return {}, {}
|
||||
|
||||
def iteration_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
|
||||
@@ -3,7 +3,17 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Union, Dict, Callable, List, Hashable, Optional, Any, TYPE_CHECKING
|
||||
from typing import (
|
||||
Union,
|
||||
Dict,
|
||||
Callable,
|
||||
List,
|
||||
Hashable,
|
||||
Optional,
|
||||
Any,
|
||||
TYPE_CHECKING,
|
||||
Tuple,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
@@ -286,3 +296,34 @@ class PrimalSolutionComponent(Component):
|
||||
f"Please set its category to None."
|
||||
)
|
||||
return [opt_value < 0.5, opt_value > 0.5]
|
||||
|
||||
def xy(
|
||||
self,
|
||||
instance: Any,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
if "Solution" not in sample:
|
||||
return x, y
|
||||
assert sample["Solution"] is not None
|
||||
for (var, var_dict) in sample["Solution"].items():
|
||||
for (idx, opt_value) in var_dict.items():
|
||||
assert opt_value is not None
|
||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
||||
f"Variable {var} has non-binary value {opt_value} in the optimal "
|
||||
f"solution. Predicting values of non-binary variables is not "
|
||||
f"currently supported. Please set its category to None."
|
||||
)
|
||||
category = instance.get_variable_category(var, idx)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
features: Any = instance.get_variable_features(var, idx)
|
||||
if "LP solution" in sample and sample["LP solution"] is not None:
|
||||
features += [sample["LP solution"][var][idx]]
|
||||
x[category] += [features]
|
||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
||||
return x, y
|
||||
|
||||
Reference in New Issue
Block a user