Document custom ML models

pull/3/head
Alinson S. Xavier 5 years ago
parent 929ff0d9d8
commit 92cc924fee

@ -146,6 +146,7 @@
<li class="second-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li> <li class="second-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
<li class="third-level"><a href="#using-customized-ml-classifiers-and-regressors">Using customized ML classifiers and regressors</a></li>
</ul> </ul>
</div></div> </div></div>
<div class="col-md-9" role="main"> <div class="col-md-9" role="main">
@ -265,6 +266,27 @@ Mean absolute error 65.843924
R2 0.517612 R2 0.517612
Median absolute error 65.843924 Median absolute error 65.843924
dtype: float64 dtype: float64
</code></pre>
<h3 id="using-customized-ml-classifiers-and-regressors">Using customized ML classifiers and regressors</h3>
<p>By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then
selects the best one based on cross-validation performance. Alternatively, the user specify which model a component
should use through the <code>classifier</code> or <code>regressor</code> contructor parameters. The provided classifiers and regressors must
follow the sklearn API. In particular, classifiers must provide the methods <code>fit</code>, <code>predict_proba</code> and <code>predict</code>,
while regressors must provide the methods <code>fit</code> and <code>predict</code></p>
<div class="admonition danger">
<p class="admonition-title">Danger</p>
<p>MIPLearn must be able to generate a copy of any custom ML classifiers and regressors through
the standard <code>copy.deepcopy</code> method. This currently makes it incompatible with Keras and TensorFlow
predictors. This is a known limitation, which will be addressed in a future version.</p>
</div>
<p>The example below shows how to construct a <code>PrimalSolutionComponent</code> which internally uses
sklearn's <code>KNeighborsClassifiers</code>. Any other sklearn classifier or pipeline can be used. </p>
<pre><code class="python">from miplearn import PrimalSolutionComponent
from sklearn.neighbors import KNeighborsClassifier
comp = PrimalSolutionComponent(classifier=KNeighborsClassifier(n_neighbors=5))
comp.fit(train_instances)
</code></pre></div> </code></pre></div>

@ -273,5 +273,5 @@
<!-- <!--
MkDocs version : 1.1 MkDocs version : 1.1
Build Date UTC : 2020-05-05 18:41:02 Build Date UTC : 2020-05-05 18:54:05
--> -->

File diff suppressed because one or more lines are too long

Binary file not shown.

@ -134,3 +134,27 @@ Median absolute error 65.843924
dtype: float64 dtype: float64
``` ```
### Using customized ML classifiers and regressors
By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then
selects the best one based on cross-validation performance. Alternatively, the user specify which model a component
should use through the `classifier` or `regressor` contructor parameters. The provided classifiers and regressors must
follow the sklearn API. In particular, classifiers must provide the methods `fit`, `predict_proba` and `predict`,
while regressors must provide the methods `fit` and `predict`
!!! danger
MIPLearn must be able to generate a copy of any custom ML classifiers and regressors through
the standard `copy.deepcopy` method. This currently makes it incompatible with Keras and TensorFlow
predictors. This is a known limitation, which will be addressed in a future version.
The example below shows how to construct a `PrimalSolutionComponent` which internally uses
sklearn's `KNeighborsClassifiers`. Any other sklearn classifier or pipeline can be used.
```python
from miplearn import PrimalSolutionComponent
from sklearn.neighbors import KNeighborsClassifier
comp = PrimalSolutionComponent(classifier=KNeighborsClassifier(n_neighbors=5))
comp.fit(train_instances)
```
Loading…
Cancel
Save