mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Remove load_state and save_state
This commit is contained in:
@@ -118,3 +118,29 @@ class BranchPriorityComponent(Component):
|
||||
instance_features = instance.get_instance_features()
|
||||
var_features = instance.get_variable_features(var, index)
|
||||
return np.hstack([instance_features, var_features])
|
||||
|
||||
def merge(self, other_components):
|
||||
keys = set(self.x_train.keys())
|
||||
for comp in other_components:
|
||||
self.pending_instances += comp.pending_instances
|
||||
keys = keys.union(set(comp.x_train.keys()))
|
||||
|
||||
# Merge x_train and y_train
|
||||
for key in keys:
|
||||
x_train_submatrices = [comp.x_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.x_train.keys()]
|
||||
y_train_submatrices = [comp.y_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.y_train.keys()]
|
||||
if key in self.x_train.keys():
|
||||
x_train_submatrices += [self.x_train[key]]
|
||||
y_train_submatrices += [self.y_train[key]]
|
||||
self.x_train[key] = np.vstack(x_train_submatrices)
|
||||
self.y_train[key] = np.vstack(y_train_submatrices)
|
||||
|
||||
# Merge trained ML predictors
|
||||
for comp in other_components:
|
||||
for key in comp.predictors.keys():
|
||||
if key not in self.predictors.keys():
|
||||
self.predictors[key] = comp.predictors[key]
|
||||
@@ -327,21 +327,3 @@ class LearningSolver:
|
||||
return
|
||||
for component in self.components.values():
|
||||
component.fit(training_instances)
|
||||
|
||||
def save_state(self, filename):
|
||||
with open(filename, "wb") as file:
|
||||
pickle.dump({
|
||||
"version": 2,
|
||||
"components": self.components,
|
||||
}, file)
|
||||
|
||||
def load_state(self, filename):
|
||||
with open(filename, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
assert data["version"] == 2
|
||||
for (component_name, component) in data["components"].items():
|
||||
if component_name not in self.components.keys():
|
||||
continue
|
||||
else:
|
||||
self.components[component_name].merge([component])
|
||||
|
||||
|
||||
@@ -18,8 +18,6 @@ def test_benchmark():
|
||||
# Training phase...
|
||||
training_solver = LearningSolver()
|
||||
training_solver.parallel_solve(train_instances, n_jobs=10)
|
||||
training_solver.fit()
|
||||
training_solver.save_state("data.bin")
|
||||
|
||||
# Test phase...
|
||||
test_solvers = {
|
||||
@@ -27,7 +25,7 @@ def test_benchmark():
|
||||
"Strategy B": LearningSolver(),
|
||||
}
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_state("data.bin")
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
|
||||
assert benchmark.raw_results().values.shape == (12,13)
|
||||
|
||||
|
||||
@@ -41,29 +41,6 @@ def test_solver():
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
# def test_solve_save_load_state():
|
||||
# instance = _get_instance()
|
||||
# components_before = {
|
||||
# "warm-start": WarmStartComponent(),
|
||||
# }
|
||||
# solver = LearningSolver(components=components_before)
|
||||
# solver.solve(instance)
|
||||
# solver.fit()
|
||||
# solver.save_state("/tmp/knapsack_train.bin")
|
||||
# prev_x_train_len = len(solver.components["warm-start"].x_train)
|
||||
# prev_y_train_len = len(solver.components["warm-start"].y_train)
|
||||
|
||||
# components_after = {
|
||||
# "warm-start": WarmStartComponent(),
|
||||
# }
|
||||
# solver = LearningSolver(components=components_after)
|
||||
# solver.load_state("/tmp/knapsack_train.bin")
|
||||
# assert len(solver.components.keys()) == 1
|
||||
# assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
||||
# assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
instances = [_get_instance() for _ in range(10)]
|
||||
solver = LearningSolver()
|
||||
|
||||
Reference in New Issue
Block a user