mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use compact variable features everywhere
This commit is contained in:
@@ -104,7 +104,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
def sample_predict(self, sample: Sample) -> Solution:
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.variables_old is not None
|
||||
assert sample.after_load.variables is not None
|
||||
|
||||
# Compute y_pred
|
||||
x, _ = self.sample_xy(None, sample)
|
||||
@@ -125,10 +125,12 @@ class PrimalSolutionComponent(Component):
|
||||
).T
|
||||
|
||||
# Convert y_pred into solution
|
||||
solution: Solution = {v: None for v in sample.after_load.variables_old.keys()}
|
||||
assert sample.after_load.variables.names is not None
|
||||
assert sample.after_load.variables.categories is not None
|
||||
solution: Solution = {v: None for v in sample.after_load.variables.names}
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_features) in sample.after_load.variables_old.items():
|
||||
category = var_features.category
|
||||
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||
category = sample.after_load.variables.categories[i]
|
||||
if category not in category_offset:
|
||||
continue
|
||||
offset = category_offset[category]
|
||||
@@ -150,10 +152,13 @@ class PrimalSolutionComponent(Component):
|
||||
y: Dict = {}
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.instance is not None
|
||||
assert sample.after_load.variables_old is not None
|
||||
for (var_name, var) in sample.after_load.variables_old.items():
|
||||
assert sample.after_load.variables is not None
|
||||
assert sample.after_load.variables.names is not None
|
||||
assert sample.after_load.variables.categories is not None
|
||||
|
||||
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||
# Initialize categories
|
||||
category = var.category
|
||||
category = sample.after_load.variables.categories[i]
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
@@ -162,17 +167,17 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Features
|
||||
features = list(sample.after_load.instance.to_list())
|
||||
features.extend(sample.after_load.variables_old[var_name].to_list())
|
||||
features.extend(sample.after_load.variables.to_list(i))
|
||||
if sample.after_lp is not None:
|
||||
assert sample.after_lp.variables_old is not None
|
||||
features.extend(sample.after_lp.variables_old[var_name].to_list())
|
||||
assert sample.after_lp.variables is not None
|
||||
features.extend(sample.after_lp.variables.to_list(i))
|
||||
x[category].append(features)
|
||||
|
||||
# Labels
|
||||
if sample.after_mip is not None:
|
||||
assert sample.after_mip.variables_old is not None
|
||||
assert sample.after_mip.variables_old[var_name] is not None
|
||||
opt_value = sample.after_mip.variables_old[var_name].value
|
||||
assert sample.after_mip.variables is not None
|
||||
assert sample.after_mip.variables.values is not None
|
||||
opt_value = sample.after_mip.variables.values[i]
|
||||
assert opt_value is not None
|
||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
||||
@@ -190,15 +195,18 @@ class PrimalSolutionComponent(Component):
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.variables_old is not None
|
||||
assert sample.after_mip.variables is not None
|
||||
assert sample.after_mip.variables.values is not None
|
||||
assert sample.after_mip.variables.names is not None
|
||||
|
||||
solution_actual = sample.after_mip.variables_old
|
||||
solution_actual = {
|
||||
var_name: sample.after_mip.variables.values[i]
|
||||
for (i, var_name) in enumerate(sample.after_mip.variables.names)
|
||||
}
|
||||
solution_pred = self.sample_predict(sample)
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
for (var_name, var) in solution_actual.items():
|
||||
assert var.value is not None
|
||||
value_actual = var.value
|
||||
for (var_name, value_actual) in solution_actual.items():
|
||||
vars_all.add(var_name)
|
||||
if value_actual > 0.5:
|
||||
vars_one.add(var_name)
|
||||
|
||||
Reference in New Issue
Block a user