mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Use compact variable features everywhere
This commit is contained in:
@@ -13,10 +13,10 @@ from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.features import (
|
||||
Variable,
|
||||
Features,
|
||||
Sample,
|
||||
InstanceFeatures,
|
||||
VariableFeatures,
|
||||
)
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
@@ -28,39 +28,37 @@ def sample() -> Sample:
|
||||
sample = Sample(
|
||||
after_load=Features(
|
||||
instance=InstanceFeatures(),
|
||||
variables_old={
|
||||
"x[0]": Variable(category="default"),
|
||||
"x[1]": Variable(category=None),
|
||||
"x[2]": Variable(category="default"),
|
||||
"x[3]": Variable(category="default"),
|
||||
},
|
||||
variables=VariableFeatures(
|
||||
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||
categories=("default", None, "default", "default"),
|
||||
),
|
||||
),
|
||||
after_lp=Features(
|
||||
variables_old={
|
||||
"x[0]": Variable(),
|
||||
"x[1]": Variable(),
|
||||
"x[2]": Variable(),
|
||||
"x[3]": Variable(),
|
||||
},
|
||||
variables=VariableFeatures(),
|
||||
),
|
||||
after_mip=Features(
|
||||
variables_old={
|
||||
"x[0]": Variable(value=0.0),
|
||||
"x[1]": Variable(value=1.0),
|
||||
"x[2]": Variable(value=1.0),
|
||||
"x[3]": Variable(value=0.0),
|
||||
}
|
||||
variables=VariableFeatures(
|
||||
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||
values=(0.0, 1.0, 1.0, 0.0),
|
||||
)
|
||||
),
|
||||
)
|
||||
sample.after_load.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
||||
sample.after_lp.variables_old["x[0]"].to_list = Mock( # type: ignore
|
||||
return_value=[0.0, 0.0]
|
||||
sample.after_load.variables.to_list = Mock( # type:ignore
|
||||
side_effect=lambda i: [
|
||||
[0.0, 0.0],
|
||||
None,
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
][i]
|
||||
)
|
||||
sample.after_lp.variables_old["x[2]"].to_list = Mock( # type: ignore
|
||||
return_value=[1.0, 0.0]
|
||||
)
|
||||
sample.after_lp.variables_old["x[3]"].to_list = Mock( # type: ignore
|
||||
return_value=[1.0, 1.0]
|
||||
sample.after_lp.variables.to_list = Mock( # type:ignore
|
||||
side_effect=lambda i: [
|
||||
[2.0, 2.0],
|
||||
None,
|
||||
[3.0, 2.0],
|
||||
[3.0, 3.0],
|
||||
][i]
|
||||
)
|
||||
return sample
|
||||
|
||||
@@ -68,9 +66,9 @@ def sample() -> Sample:
|
||||
def test_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
"default": [
|
||||
[5.0, 0.0, 0.0],
|
||||
[5.0, 1.0, 0.0],
|
||||
[5.0, 1.0, 1.0],
|
||||
[5.0, 0.0, 0.0, 2.0, 2.0],
|
||||
[5.0, 1.0, 0.0, 3.0, 2.0],
|
||||
[5.0, 1.0, 1.0, 3.0, 3.0],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
|
||||
Reference in New Issue
Block a user