mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Use compact variable features everywhere
This commit is contained in:
@@ -104,7 +104,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
|
|
||||||
def sample_predict(self, sample: Sample) -> Solution:
|
def sample_predict(self, sample: Sample) -> Solution:
|
||||||
assert sample.after_load is not None
|
assert sample.after_load is not None
|
||||||
assert sample.after_load.variables_old is not None
|
assert sample.after_load.variables is not None
|
||||||
|
|
||||||
# Compute y_pred
|
# Compute y_pred
|
||||||
x, _ = self.sample_xy(None, sample)
|
x, _ = self.sample_xy(None, sample)
|
||||||
@@ -125,10 +125,12 @@ class PrimalSolutionComponent(Component):
|
|||||||
).T
|
).T
|
||||||
|
|
||||||
# Convert y_pred into solution
|
# Convert y_pred into solution
|
||||||
solution: Solution = {v: None for v in sample.after_load.variables_old.keys()}
|
assert sample.after_load.variables.names is not None
|
||||||
|
assert sample.after_load.variables.categories is not None
|
||||||
|
solution: Solution = {v: None for v in sample.after_load.variables.names}
|
||||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||||
for (var_name, var_features) in sample.after_load.variables_old.items():
|
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||||
category = var_features.category
|
category = sample.after_load.variables.categories[i]
|
||||||
if category not in category_offset:
|
if category not in category_offset:
|
||||||
continue
|
continue
|
||||||
offset = category_offset[category]
|
offset = category_offset[category]
|
||||||
@@ -150,10 +152,13 @@ class PrimalSolutionComponent(Component):
|
|||||||
y: Dict = {}
|
y: Dict = {}
|
||||||
assert sample.after_load is not None
|
assert sample.after_load is not None
|
||||||
assert sample.after_load.instance is not None
|
assert sample.after_load.instance is not None
|
||||||
assert sample.after_load.variables_old is not None
|
assert sample.after_load.variables is not None
|
||||||
for (var_name, var) in sample.after_load.variables_old.items():
|
assert sample.after_load.variables.names is not None
|
||||||
|
assert sample.after_load.variables.categories is not None
|
||||||
|
|
||||||
|
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||||
# Initialize categories
|
# Initialize categories
|
||||||
category = var.category
|
category = sample.after_load.variables.categories[i]
|
||||||
if category is None:
|
if category is None:
|
||||||
continue
|
continue
|
||||||
if category not in x.keys():
|
if category not in x.keys():
|
||||||
@@ -162,17 +167,17 @@ class PrimalSolutionComponent(Component):
|
|||||||
|
|
||||||
# Features
|
# Features
|
||||||
features = list(sample.after_load.instance.to_list())
|
features = list(sample.after_load.instance.to_list())
|
||||||
features.extend(sample.after_load.variables_old[var_name].to_list())
|
features.extend(sample.after_load.variables.to_list(i))
|
||||||
if sample.after_lp is not None:
|
if sample.after_lp is not None:
|
||||||
assert sample.after_lp.variables_old is not None
|
assert sample.after_lp.variables is not None
|
||||||
features.extend(sample.after_lp.variables_old[var_name].to_list())
|
features.extend(sample.after_lp.variables.to_list(i))
|
||||||
x[category].append(features)
|
x[category].append(features)
|
||||||
|
|
||||||
# Labels
|
# Labels
|
||||||
if sample.after_mip is not None:
|
if sample.after_mip is not None:
|
||||||
assert sample.after_mip.variables_old is not None
|
assert sample.after_mip.variables is not None
|
||||||
assert sample.after_mip.variables_old[var_name] is not None
|
assert sample.after_mip.variables.values is not None
|
||||||
opt_value = sample.after_mip.variables_old[var_name].value
|
opt_value = sample.after_mip.variables.values[i]
|
||||||
assert opt_value is not None
|
assert opt_value is not None
|
||||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
||||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
f"Variable {var_name} has non-binary value {opt_value} in the "
|
||||||
@@ -190,15 +195,18 @@ class PrimalSolutionComponent(Component):
|
|||||||
sample: Sample,
|
sample: Sample,
|
||||||
) -> Dict[Hashable, Dict[str, float]]:
|
) -> Dict[Hashable, Dict[str, float]]:
|
||||||
assert sample.after_mip is not None
|
assert sample.after_mip is not None
|
||||||
assert sample.after_mip.variables_old is not None
|
assert sample.after_mip.variables is not None
|
||||||
|
assert sample.after_mip.variables.values is not None
|
||||||
|
assert sample.after_mip.variables.names is not None
|
||||||
|
|
||||||
solution_actual = sample.after_mip.variables_old
|
solution_actual = {
|
||||||
|
var_name: sample.after_mip.variables.values[i]
|
||||||
|
for (i, var_name) in enumerate(sample.after_mip.variables.names)
|
||||||
|
}
|
||||||
solution_pred = self.sample_predict(sample)
|
solution_pred = self.sample_predict(sample)
|
||||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||||
pred_one_positive, pred_zero_positive = set(), set()
|
pred_one_positive, pred_zero_positive = set(), set()
|
||||||
for (var_name, var) in solution_actual.items():
|
for (var_name, value_actual) in solution_actual.items():
|
||||||
assert var.value is not None
|
|
||||||
value_actual = var.value
|
|
||||||
vars_all.add(var_name)
|
vars_all.add(var_name)
|
||||||
if value_actual > 0.5:
|
if value_actual > 0.5:
|
||||||
vars_one.add(var_name)
|
vars_one.add(var_name)
|
||||||
|
|||||||
@@ -10,8 +10,6 @@ from typing import TYPE_CHECKING, Dict, Optional, List, Hashable, Tuple
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from miplearn.types import Category
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
|
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
@@ -49,49 +47,31 @@ class VariableFeatures:
|
|||||||
user_features: Optional[Tuple[Optional[Tuple[float, ...]], ...]] = None
|
user_features: Optional[Tuple[Optional[Tuple[float, ...]], ...]] = None
|
||||||
values: Optional[Tuple[float, ...]] = None
|
values: Optional[Tuple[float, ...]] = None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Variable:
|
|
||||||
basis_status: Optional[str] = None
|
|
||||||
category: Optional[Hashable] = None
|
|
||||||
lower_bound: Optional[float] = None
|
|
||||||
obj_coeff: Optional[float] = None
|
|
||||||
reduced_cost: Optional[float] = None
|
|
||||||
sa_lb_down: Optional[float] = None
|
|
||||||
sa_lb_up: Optional[float] = None
|
|
||||||
sa_obj_down: Optional[float] = None
|
|
||||||
sa_obj_up: Optional[float] = None
|
|
||||||
sa_ub_down: Optional[float] = None
|
|
||||||
sa_ub_up: Optional[float] = None
|
|
||||||
type: Optional[str] = None
|
|
||||||
upper_bound: Optional[float] = None
|
|
||||||
user_features: Optional[List[float]] = None
|
|
||||||
value: Optional[float] = None
|
|
||||||
|
|
||||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||||
alvarez_2017: Optional[List[float]] = None
|
alvarez_2017: Optional[List[List[float]]] = None
|
||||||
|
|
||||||
def to_list(self) -> List[float]:
|
def to_list(self, index: int) -> List[float]:
|
||||||
features: List[float] = []
|
features: List[float] = []
|
||||||
for attr in [
|
for attr in [
|
||||||
"lower_bound",
|
"lower_bounds",
|
||||||
"obj_coeff",
|
"obj_coeffs",
|
||||||
"reduced_cost",
|
"reduced_costs",
|
||||||
"sa_lb_down",
|
"sa_lb_down",
|
||||||
"sa_lb_up",
|
"sa_lb_up",
|
||||||
"sa_obj_down",
|
"sa_obj_down",
|
||||||
"sa_obj_up",
|
"sa_obj_up",
|
||||||
"sa_ub_down",
|
"sa_ub_down",
|
||||||
"sa_ub_up",
|
"sa_ub_up",
|
||||||
"upper_bound",
|
"upper_bounds",
|
||||||
"value",
|
"values",
|
||||||
]:
|
]:
|
||||||
if getattr(self, attr) is not None:
|
if getattr(self, attr) is not None:
|
||||||
features.append(getattr(self, attr))
|
features.append(getattr(self, attr)[index])
|
||||||
for attr in ["user_features", "alvarez_2017"]:
|
for attr in ["user_features", "alvarez_2017"]:
|
||||||
if getattr(self, attr) is not None:
|
if getattr(self, attr) is not None:
|
||||||
features.extend(getattr(self, attr))
|
if getattr(self, attr)[index] is not None:
|
||||||
|
features.extend(getattr(self, attr)[index])
|
||||||
_clip(features)
|
_clip(features)
|
||||||
return features
|
return features
|
||||||
|
|
||||||
@@ -136,7 +116,6 @@ class Constraint:
|
|||||||
class Features:
|
class Features:
|
||||||
instance: Optional[InstanceFeatures] = None
|
instance: Optional[InstanceFeatures] = None
|
||||||
variables: Optional[VariableFeatures] = None
|
variables: Optional[VariableFeatures] = None
|
||||||
variables_old: Optional[Dict[str, Variable]] = None
|
|
||||||
constraints: Optional[Dict[str, Constraint]] = None
|
constraints: Optional[Dict[str, Constraint]] = None
|
||||||
lp_solve: Optional["LPSolveStats"] = None
|
lp_solve: Optional["LPSolveStats"] = None
|
||||||
mip_solve: Optional["MIPSolveStats"] = None
|
mip_solve: Optional["MIPSolveStats"] = None
|
||||||
@@ -169,51 +148,16 @@ class FeaturesExtractor:
|
|||||||
with_static=with_static,
|
with_static=with_static,
|
||||||
with_sa=self.with_sa,
|
with_sa=self.with_sa,
|
||||||
)
|
)
|
||||||
features.variables_old = self.solver.get_variables_old(
|
|
||||||
with_static=with_static,
|
|
||||||
)
|
|
||||||
features.constraints = self.solver.get_constraints(
|
features.constraints = self.solver.get_constraints(
|
||||||
with_static=with_static,
|
with_static=with_static,
|
||||||
)
|
)
|
||||||
if with_static:
|
if with_static:
|
||||||
self._extract_user_features_vars(instance, features)
|
self._extract_user_features_vars(instance, features)
|
||||||
self._extract_user_features_vars_old(instance, features)
|
|
||||||
self._extract_user_features_constrs(instance, features)
|
self._extract_user_features_constrs(instance, features)
|
||||||
self._extract_user_features_instance(instance, features)
|
self._extract_user_features_instance(instance, features)
|
||||||
self._extract_alvarez_2017(features)
|
self._extract_alvarez_2017(features)
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def _extract_user_features_vars_old(
|
|
||||||
self,
|
|
||||||
instance: "Instance",
|
|
||||||
features: Features,
|
|
||||||
) -> None:
|
|
||||||
assert features.variables_old is not None
|
|
||||||
for (var_name, var) in features.variables_old.items():
|
|
||||||
user_features: Optional[List[float]] = None
|
|
||||||
category: Category = instance.get_variable_category(var_name)
|
|
||||||
if category is not None:
|
|
||||||
assert isinstance(category, collections.Hashable), (
|
|
||||||
f"Variable category must be be hashable. "
|
|
||||||
f"Found {type(category).__name__} instead for var={var_name}."
|
|
||||||
)
|
|
||||||
user_features = instance.get_variable_features(var_name)
|
|
||||||
if isinstance(user_features, np.ndarray):
|
|
||||||
user_features = user_features.tolist()
|
|
||||||
assert isinstance(user_features, list), (
|
|
||||||
f"Variable features must be a list. "
|
|
||||||
f"Found {type(user_features).__name__} instead for "
|
|
||||||
f"var={var_name}."
|
|
||||||
)
|
|
||||||
for v in user_features:
|
|
||||||
assert isinstance(v, numbers.Real), (
|
|
||||||
f"Variable features must be a list of numbers. "
|
|
||||||
f"Found {type(v).__name__} instead "
|
|
||||||
f"for var={var_name}."
|
|
||||||
)
|
|
||||||
var.category = category
|
|
||||||
var.user_features = user_features
|
|
||||||
|
|
||||||
def _extract_user_features_vars(
|
def _extract_user_features_vars(
|
||||||
self,
|
self,
|
||||||
instance: "Instance",
|
instance: "Instance",
|
||||||
@@ -312,72 +256,80 @@ class FeaturesExtractor:
|
|||||||
)
|
)
|
||||||
|
|
||||||
def _extract_alvarez_2017(self, features: Features) -> None:
|
def _extract_alvarez_2017(self, features: Features) -> None:
|
||||||
assert features.variables_old is not None
|
assert features.variables is not None
|
||||||
|
assert features.variables.names is not None
|
||||||
|
|
||||||
|
obj_coeffs = features.variables.obj_coeffs
|
||||||
|
obj_sa_down = features.variables.sa_obj_down
|
||||||
|
obj_sa_up = features.variables.sa_obj_up
|
||||||
|
values = features.variables.values
|
||||||
|
|
||||||
pos_obj_coeff_sum = 0.0
|
pos_obj_coeff_sum = 0.0
|
||||||
neg_obj_coeff_sum = 0.0
|
neg_obj_coeff_sum = 0.0
|
||||||
for (varname, var) in features.variables_old.items():
|
if obj_coeffs is not None:
|
||||||
if var.obj_coeff is not None:
|
for coeff in obj_coeffs:
|
||||||
if var.obj_coeff > 0:
|
if coeff > 0:
|
||||||
pos_obj_coeff_sum += var.obj_coeff
|
pos_obj_coeff_sum += coeff
|
||||||
if var.obj_coeff < 0:
|
if coeff < 0:
|
||||||
neg_obj_coeff_sum += -var.obj_coeff
|
neg_obj_coeff_sum += -coeff
|
||||||
|
|
||||||
for (varname, var) in features.variables_old.items():
|
features.variables.alvarez_2017 = []
|
||||||
assert isinstance(var, Variable)
|
for i in range(len(features.variables.names)):
|
||||||
f: List[float] = []
|
f: List[float] = []
|
||||||
if var.obj_coeff is not None:
|
if obj_coeffs is not None:
|
||||||
# Feature 1
|
# Feature 1
|
||||||
f.append(np.sign(var.obj_coeff))
|
f.append(np.sign(obj_coeffs[i]))
|
||||||
|
|
||||||
# Feature 2
|
# Feature 2
|
||||||
if pos_obj_coeff_sum > 0:
|
if pos_obj_coeff_sum > 0:
|
||||||
f.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
f.append(abs(obj_coeffs[i]) / pos_obj_coeff_sum)
|
||||||
else:
|
else:
|
||||||
f.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
# Feature 3
|
# Feature 3
|
||||||
if neg_obj_coeff_sum > 0:
|
if neg_obj_coeff_sum > 0:
|
||||||
f.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
f.append(abs(obj_coeffs[i]) / neg_obj_coeff_sum)
|
||||||
else:
|
else:
|
||||||
f.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
if var.value is not None:
|
if values is not None:
|
||||||
# Feature 37
|
# Feature 37
|
||||||
f.append(
|
f.append(
|
||||||
min(
|
min(
|
||||||
var.value - np.floor(var.value),
|
values[i] - np.floor(values[i]),
|
||||||
np.ceil(var.value) - var.value,
|
np.ceil(values[i]) - values[i],
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
if var.sa_obj_up is not None:
|
if obj_sa_up is not None:
|
||||||
assert var.obj_coeff is not None
|
assert obj_sa_down is not None
|
||||||
assert var.sa_obj_down is not None
|
assert obj_coeffs is not None
|
||||||
|
|
||||||
# Convert inf into large finite numbers
|
# Convert inf into large finite numbers
|
||||||
sa_obj_down = max(-1e20, var.sa_obj_down)
|
sd = max(-1e20, obj_sa_down[i])
|
||||||
sa_obj_up = min(1e20, var.sa_obj_up)
|
su = min(1e20, obj_sa_up[i])
|
||||||
|
obj = obj_coeffs[i]
|
||||||
|
|
||||||
# Features 44 and 46
|
# Features 44 and 46
|
||||||
f.append(np.sign(var.sa_obj_up))
|
f.append(np.sign(obj_sa_up[i]))
|
||||||
f.append(np.sign(var.sa_obj_down))
|
f.append(np.sign(obj_sa_down[i]))
|
||||||
|
|
||||||
# Feature 47
|
# Feature 47
|
||||||
csign = np.sign(var.obj_coeff)
|
csign = np.sign(obj)
|
||||||
if csign != 0 and ((var.obj_coeff - sa_obj_down) / csign) > 0.001:
|
if csign != 0 and ((obj - sd) / csign) > 0.001:
|
||||||
f.append(log((var.obj_coeff - sa_obj_down) / csign))
|
f.append(log((obj - sd) / csign))
|
||||||
else:
|
else:
|
||||||
f.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
# Feature 48
|
# Feature 48
|
||||||
if csign != 0 and ((sa_obj_up - var.obj_coeff) / csign) > 0.001:
|
if csign != 0 and ((su - obj) / csign) > 0.001:
|
||||||
f.append(log((sa_obj_up - var.obj_coeff) / csign))
|
f.append(log((su - obj) / csign))
|
||||||
else:
|
else:
|
||||||
f.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
for v in f:
|
for v in f:
|
||||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||||
var.alvarez_2017 = f
|
features.variables.alvarez_2017.append(f)
|
||||||
|
|
||||||
|
|
||||||
def _clip(v: List[float]) -> None:
|
def _clip(v: List[float]) -> None:
|
||||||
|
|||||||
@@ -6,11 +6,11 @@ import re
|
|||||||
import sys
|
import sys
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
from random import randint
|
from random import randint
|
||||||
from typing import List, Any, Dict, Optional, Hashable, Tuple, cast, TYPE_CHECKING
|
from typing import List, Any, Dict, Optional, Hashable, Tuple, TYPE_CHECKING
|
||||||
|
|
||||||
from overrides import overrides
|
from overrides import overrides
|
||||||
|
|
||||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
from miplearn.features import Constraint, VariableFeatures
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.solvers import _RedirectOutput
|
from miplearn.solvers import _RedirectOutput
|
||||||
from miplearn.solvers.internal import (
|
from miplearn.solvers.internal import (
|
||||||
@@ -289,89 +289,6 @@ class GurobiSolver(InternalSolver):
|
|||||||
"values",
|
"values",
|
||||||
]
|
]
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variables_old(
|
|
||||||
self,
|
|
||||||
with_static: bool = True,
|
|
||||||
with_sa: bool = True,
|
|
||||||
) -> Dict[str, Variable]:
|
|
||||||
assert self.model is not None
|
|
||||||
|
|
||||||
names = self._var_names
|
|
||||||
ub = self._var_ubs
|
|
||||||
lb = self._var_lbs
|
|
||||||
obj_coeff = self._var_obj_coeffs
|
|
||||||
|
|
||||||
values = None
|
|
||||||
rc = None
|
|
||||||
sa_obj_up = None
|
|
||||||
sa_obj_down = None
|
|
||||||
sa_ub_up = None
|
|
||||||
sa_ub_down = None
|
|
||||||
sa_lb_up = None
|
|
||||||
sa_lb_down = None
|
|
||||||
vbasis = None
|
|
||||||
|
|
||||||
if self.model.solCount > 0:
|
|
||||||
values = self.model.getAttr("x", self._gp_vars)
|
|
||||||
|
|
||||||
if self._has_lp_solution:
|
|
||||||
rc = self.model.getAttr("rc", self._gp_vars)
|
|
||||||
vbasis = self.model.getAttr("vbasis", self._gp_vars)
|
|
||||||
if with_sa:
|
|
||||||
sa_obj_up = self.model.getAttr("saobjUp", self._gp_vars)
|
|
||||||
sa_obj_down = self.model.getAttr("saobjLow", self._gp_vars)
|
|
||||||
sa_ub_up = self.model.getAttr("saubUp", self._gp_vars)
|
|
||||||
sa_ub_down = self.model.getAttr("saubLow", self._gp_vars)
|
|
||||||
sa_lb_up = self.model.getAttr("salbUp", self._gp_vars)
|
|
||||||
sa_lb_down = self.model.getAttr("salbLow", self._gp_vars)
|
|
||||||
|
|
||||||
variables = {}
|
|
||||||
for (i, gp_var) in enumerate(self._gp_vars):
|
|
||||||
assert len(names[i]) > 0, "Empty variable name detected."
|
|
||||||
assert (
|
|
||||||
names[i] not in variables
|
|
||||||
), f"Duplicated variable name detected: {names[i]}"
|
|
||||||
var = Variable()
|
|
||||||
if with_static:
|
|
||||||
assert lb is not None
|
|
||||||
assert ub is not None
|
|
||||||
assert obj_coeff is not None
|
|
||||||
var.lower_bound = lb[i]
|
|
||||||
var.upper_bound = ub[i]
|
|
||||||
var.obj_coeff = obj_coeff[i]
|
|
||||||
var.type = self._var_types[i]
|
|
||||||
if values is not None:
|
|
||||||
var.value = values[i]
|
|
||||||
if rc is not None:
|
|
||||||
assert vbasis is not None
|
|
||||||
var.reduced_cost = rc[i]
|
|
||||||
if vbasis[i] == 0:
|
|
||||||
var.basis_status = "B"
|
|
||||||
elif vbasis[i] == -1:
|
|
||||||
var.basis_status = "L"
|
|
||||||
elif vbasis[i] == -2:
|
|
||||||
var.basis_status = "U"
|
|
||||||
elif vbasis[i] == -3:
|
|
||||||
var.basis_status = "S"
|
|
||||||
else:
|
|
||||||
raise Exception(f"unknown vbasis: {vbasis}")
|
|
||||||
if with_sa:
|
|
||||||
assert sa_obj_up is not None
|
|
||||||
assert sa_obj_down is not None
|
|
||||||
assert sa_ub_up is not None
|
|
||||||
assert sa_ub_down is not None
|
|
||||||
assert sa_lb_up is not None
|
|
||||||
assert sa_lb_down is not None
|
|
||||||
var.sa_obj_up = sa_obj_up[i]
|
|
||||||
var.sa_obj_down = sa_obj_down[i]
|
|
||||||
var.sa_ub_up = sa_ub_up[i]
|
|
||||||
var.sa_ub_down = sa_ub_down[i]
|
|
||||||
var.sa_lb_up = sa_lb_up[i]
|
|
||||||
var.sa_lb_down = sa_lb_down[i]
|
|
||||||
variables[names[i]] = var
|
|
||||||
return variables
|
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def get_variables(
|
def get_variables(
|
||||||
self,
|
self,
|
||||||
@@ -651,27 +568,6 @@ class GurobiSolver(InternalSolver):
|
|||||||
"get_value cannot be called from cb_where=%s" % self.cb_where
|
"get_value cannot be called from cb_where=%s" % self.cb_where
|
||||||
)
|
)
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _parse_gurobi_var_lp(gp_var: Any, var: Variable) -> None:
|
|
||||||
var.reduced_cost = gp_var.rc
|
|
||||||
var.sa_obj_up = gp_var.saobjUp
|
|
||||||
var.sa_obj_down = gp_var.saobjLow
|
|
||||||
var.sa_ub_up = gp_var.saubUp
|
|
||||||
var.sa_ub_down = gp_var.saubLow
|
|
||||||
var.sa_lb_up = gp_var.salbUp
|
|
||||||
var.sa_lb_down = gp_var.salbLow
|
|
||||||
vbasis = gp_var.vbasis
|
|
||||||
if vbasis == 0:
|
|
||||||
var.basis_status = "B"
|
|
||||||
elif vbasis == -1:
|
|
||||||
var.basis_status = "L"
|
|
||||||
elif vbasis == -2:
|
|
||||||
var.basis_status = "U"
|
|
||||||
elif vbasis == -3:
|
|
||||||
var.basis_status = "S"
|
|
||||||
else:
|
|
||||||
raise Exception(f"unknown vbasis: {vbasis}")
|
|
||||||
|
|
||||||
def _raise_if_callback(self) -> None:
|
def _raise_if_callback(self) -> None:
|
||||||
if self.cb_where is not None:
|
if self.cb_where is not None:
|
||||||
raise Exception("method cannot be called from a callback")
|
raise Exception("method cannot be called from a callback")
|
||||||
|
|||||||
@@ -9,7 +9,7 @@ from typing import Any, Dict, List, Optional
|
|||||||
|
|
||||||
from overrides import EnforceOverrides
|
from overrides import EnforceOverrides
|
||||||
|
|
||||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
from miplearn.features import Constraint, VariableFeatures
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.types import (
|
from miplearn.types import (
|
||||||
IterationCallback,
|
IterationCallback,
|
||||||
@@ -17,7 +17,6 @@ from miplearn.types import (
|
|||||||
BranchPriorities,
|
BranchPriorities,
|
||||||
UserCutCallback,
|
UserCutCallback,
|
||||||
Solution,
|
Solution,
|
||||||
VariableName,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -236,10 +235,6 @@ class InternalSolver(ABC, EnforceOverrides):
|
|||||||
"""
|
"""
|
||||||
return False
|
return False
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def get_variables_old(self, with_static: bool = True) -> Dict[str, Variable]:
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def get_variables(
|
def get_variables(
|
||||||
self,
|
self,
|
||||||
|
|||||||
@@ -19,7 +19,7 @@ from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
|||||||
from pyomo.opt import TerminationCondition
|
from pyomo.opt import TerminationCondition
|
||||||
from pyomo.opt.base.solvers import SolverFactory
|
from pyomo.opt.base.solvers import SolverFactory
|
||||||
|
|
||||||
from miplearn.features import Variable, VariableFeatures
|
from miplearn.features import VariableFeatures
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.solvers import _RedirectOutput
|
from miplearn.solvers import _RedirectOutput
|
||||||
from miplearn.solvers.internal import (
|
from miplearn.solvers.internal import (
|
||||||
@@ -175,21 +175,6 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
solution[f"{var}[{index}]"] = var[index].value
|
solution[f"{var}[{index}]"] = var[index].value
|
||||||
return solution
|
return solution
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variables_old(self, with_static: bool = True) -> Dict[str, Variable]:
|
|
||||||
assert self.model is not None
|
|
||||||
variables = {}
|
|
||||||
for var in self.model.component_objects(pyomo.core.Var):
|
|
||||||
for idx in var:
|
|
||||||
varname = f"{var}[{idx}]"
|
|
||||||
if idx is None:
|
|
||||||
varname = str(var)
|
|
||||||
variables[varname] = self._parse_pyomo_variable(
|
|
||||||
var[idx],
|
|
||||||
with_static=with_static,
|
|
||||||
)
|
|
||||||
return variables
|
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def get_variables(
|
def get_variables(
|
||||||
self,
|
self,
|
||||||
@@ -495,49 +480,6 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
def _get_warm_start_regexp(self) -> Optional[str]:
|
def _get_warm_start_regexp(self) -> Optional[str]:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def _parse_pyomo_variable(
|
|
||||||
self,
|
|
||||||
pyomo_var: pyomo.core.Var,
|
|
||||||
with_static: bool = True,
|
|
||||||
) -> Variable:
|
|
||||||
assert self.model is not None
|
|
||||||
variable = Variable()
|
|
||||||
|
|
||||||
if with_static:
|
|
||||||
# Variable type
|
|
||||||
vtype: Optional[str] = None
|
|
||||||
if pyomo_var.domain == pyomo.core.Binary:
|
|
||||||
vtype = "B"
|
|
||||||
elif pyomo_var.domain in [
|
|
||||||
pyomo.core.Reals,
|
|
||||||
pyomo.core.NonNegativeReals,
|
|
||||||
pyomo.core.NonPositiveReals,
|
|
||||||
pyomo.core.NegativeReals,
|
|
||||||
pyomo.core.PositiveReals,
|
|
||||||
]:
|
|
||||||
vtype = "C"
|
|
||||||
if vtype is None:
|
|
||||||
raise Exception(f"unknown variable domain: {pyomo_var.domain}")
|
|
||||||
variable.type = vtype
|
|
||||||
|
|
||||||
# Bounds
|
|
||||||
lb, ub = pyomo_var.bounds
|
|
||||||
variable.upper_bound = float(ub)
|
|
||||||
variable.lower_bound = float(lb)
|
|
||||||
|
|
||||||
# Objective coefficient
|
|
||||||
obj_coeff = 0.0
|
|
||||||
if pyomo_var.name in self._obj:
|
|
||||||
obj_coeff = self._obj[pyomo_var.name]
|
|
||||||
variable.obj_coeff = obj_coeff
|
|
||||||
|
|
||||||
# Reduced costs
|
|
||||||
if pyomo_var in self.model.rc:
|
|
||||||
variable.reduced_cost = self.model.rc[pyomo_var]
|
|
||||||
|
|
||||||
variable.value = pyomo_var.value
|
|
||||||
return variable
|
|
||||||
|
|
||||||
def _parse_pyomo_constraint(
|
def _parse_pyomo_constraint(
|
||||||
self,
|
self,
|
||||||
pyomo_constr: pyomo.core.Constraint,
|
pyomo_constr: pyomo.core.Constraint,
|
||||||
|
|||||||
@@ -3,14 +3,12 @@
|
|||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from typing import Optional, List, Dict
|
from typing import Optional
|
||||||
|
|
||||||
from overrides import overrides
|
from overrides import overrides
|
||||||
from pyomo import environ as pe
|
from pyomo import environ as pe
|
||||||
from scipy.stats import randint
|
from scipy.stats import randint
|
||||||
|
|
||||||
from miplearn.features import Variable
|
|
||||||
from miplearn.solvers.gurobi import GurobiSolver
|
|
||||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||||
from miplearn.types import SolverParams, BranchPriorities
|
from miplearn.types import SolverParams, BranchPriorities
|
||||||
|
|
||||||
|
|||||||
@@ -3,9 +3,8 @@
|
|||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from typing import Any, Dict, List
|
from typing import Any, Dict, List
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
from miplearn.features import Constraint, VariableFeatures
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
|
|
||||||
inf = float("inf")
|
inf = float("inf")
|
||||||
@@ -22,33 +21,15 @@ def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constrai
|
|||||||
return constraints
|
return constraints
|
||||||
|
|
||||||
|
|
||||||
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
|
|
||||||
for (cname, c) in vars.items():
|
|
||||||
for attr in [
|
|
||||||
"upper_bound",
|
|
||||||
"lower_bound",
|
|
||||||
"obj_coeff",
|
|
||||||
"value",
|
|
||||||
"reduced_cost",
|
|
||||||
"sa_obj_up",
|
|
||||||
"sa_obj_down",
|
|
||||||
"sa_ub_up",
|
|
||||||
"sa_ub_down",
|
|
||||||
"sa_lb_up",
|
|
||||||
"sa_lb_down",
|
|
||||||
]:
|
|
||||||
if getattr(c, attr) is not None:
|
|
||||||
setattr(c, attr, round(getattr(c, attr), 6))
|
|
||||||
if c.alvarez_2017 is not None:
|
|
||||||
c.alvarez_2017 = list(np.round(c.alvarez_2017, 6))
|
|
||||||
return vars
|
|
||||||
|
|
||||||
|
|
||||||
def _round(obj: Any) -> Any:
|
def _round(obj: Any) -> Any:
|
||||||
if isinstance(obj, tuple):
|
|
||||||
if obj is None:
|
if obj is None:
|
||||||
return None
|
return None
|
||||||
return tuple([round(v, 6) for v in obj])
|
if isinstance(obj, float):
|
||||||
|
return round(obj, 6)
|
||||||
|
if isinstance(obj, tuple):
|
||||||
|
return tuple([_round(v) for v in obj])
|
||||||
|
if isinstance(obj, list):
|
||||||
|
return [_round(v) for v in obj]
|
||||||
if isinstance(obj, VariableFeatures):
|
if isinstance(obj, VariableFeatures):
|
||||||
obj.reduced_costs = _round(obj.reduced_costs)
|
obj.reduced_costs = _round(obj.reduced_costs)
|
||||||
obj.sa_obj_up = _round(obj.sa_obj_up)
|
obj.sa_obj_up = _round(obj.sa_obj_up)
|
||||||
@@ -58,6 +39,7 @@ def _round(obj: Any) -> Any:
|
|||||||
obj.sa_ub_up = _round(obj.sa_ub_up)
|
obj.sa_ub_up = _round(obj.sa_ub_up)
|
||||||
obj.sa_ub_down = _round(obj.sa_ub_down)
|
obj.sa_ub_down = _round(obj.sa_ub_down)
|
||||||
obj.values = _round(obj.values)
|
obj.values = _round(obj.values)
|
||||||
|
obj.alvarez_2017 = _round(obj.alvarez_2017)
|
||||||
return obj
|
return obj
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -13,10 +13,10 @@ from miplearn.classifiers.threshold import Threshold
|
|||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
from miplearn.features import (
|
from miplearn.features import (
|
||||||
Variable,
|
|
||||||
Features,
|
Features,
|
||||||
Sample,
|
Sample,
|
||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
|
VariableFeatures,
|
||||||
)
|
)
|
||||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
@@ -28,39 +28,37 @@ def sample() -> Sample:
|
|||||||
sample = Sample(
|
sample = Sample(
|
||||||
after_load=Features(
|
after_load=Features(
|
||||||
instance=InstanceFeatures(),
|
instance=InstanceFeatures(),
|
||||||
variables_old={
|
variables=VariableFeatures(
|
||||||
"x[0]": Variable(category="default"),
|
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||||
"x[1]": Variable(category=None),
|
categories=("default", None, "default", "default"),
|
||||||
"x[2]": Variable(category="default"),
|
),
|
||||||
"x[3]": Variable(category="default"),
|
|
||||||
},
|
|
||||||
),
|
),
|
||||||
after_lp=Features(
|
after_lp=Features(
|
||||||
variables_old={
|
variables=VariableFeatures(),
|
||||||
"x[0]": Variable(),
|
|
||||||
"x[1]": Variable(),
|
|
||||||
"x[2]": Variable(),
|
|
||||||
"x[3]": Variable(),
|
|
||||||
},
|
|
||||||
),
|
),
|
||||||
after_mip=Features(
|
after_mip=Features(
|
||||||
variables_old={
|
variables=VariableFeatures(
|
||||||
"x[0]": Variable(value=0.0),
|
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||||
"x[1]": Variable(value=1.0),
|
values=(0.0, 1.0, 1.0, 0.0),
|
||||||
"x[2]": Variable(value=1.0),
|
)
|
||||||
"x[3]": Variable(value=0.0),
|
|
||||||
}
|
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
sample.after_load.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
sample.after_load.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
||||||
sample.after_lp.variables_old["x[0]"].to_list = Mock( # type: ignore
|
sample.after_load.variables.to_list = Mock( # type:ignore
|
||||||
return_value=[0.0, 0.0]
|
side_effect=lambda i: [
|
||||||
|
[0.0, 0.0],
|
||||||
|
None,
|
||||||
|
[1.0, 0.0],
|
||||||
|
[1.0, 1.0],
|
||||||
|
][i]
|
||||||
)
|
)
|
||||||
sample.after_lp.variables_old["x[2]"].to_list = Mock( # type: ignore
|
sample.after_lp.variables.to_list = Mock( # type:ignore
|
||||||
return_value=[1.0, 0.0]
|
side_effect=lambda i: [
|
||||||
)
|
[2.0, 2.0],
|
||||||
sample.after_lp.variables_old["x[3]"].to_list = Mock( # type: ignore
|
None,
|
||||||
return_value=[1.0, 1.0]
|
[3.0, 2.0],
|
||||||
|
[3.0, 3.0],
|
||||||
|
][i]
|
||||||
)
|
)
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
@@ -68,9 +66,9 @@ def sample() -> Sample:
|
|||||||
def test_xy(sample: Sample) -> None:
|
def test_xy(sample: Sample) -> None:
|
||||||
x_expected = {
|
x_expected = {
|
||||||
"default": [
|
"default": [
|
||||||
[5.0, 0.0, 0.0],
|
[5.0, 0.0, 0.0, 2.0, 2.0],
|
||||||
[5.0, 1.0, 0.0],
|
[5.0, 1.0, 0.0, 3.0, 2.0],
|
||||||
[5.0, 1.0, 1.0],
|
[5.0, 1.0, 1.0, 3.0, 3.0],
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
y_expected = {
|
y_expected = {
|
||||||
|
|||||||
@@ -43,13 +43,8 @@ def test_instance() -> None:
|
|||||||
assert instance.samples[0].after_mip is not None
|
assert instance.samples[0].after_mip is not None
|
||||||
features = instance.samples[0].after_mip
|
features = instance.samples[0].after_mip
|
||||||
assert features is not None
|
assert features is not None
|
||||||
assert features.variables_old is not None
|
assert features.variables is not None
|
||||||
assert features.variables_old["x[(0, 1)]"].value == 1.0
|
assert features.variables.values == (1.0, 0.0, 1.0, 1.0, 0.0, 1.0)
|
||||||
assert features.variables_old["x[(0, 2)]"].value == 0.0
|
|
||||||
assert features.variables_old["x[(0, 3)]"].value == 1.0
|
|
||||||
assert features.variables_old["x[(1, 2)]"].value == 1.0
|
|
||||||
assert features.variables_old["x[(1, 3)]"].value == 0.0
|
|
||||||
assert features.variables_old["x[(2, 3)]"].value == 1.0
|
|
||||||
assert features.mip_solve is not None
|
assert features.mip_solve is not None
|
||||||
assert features.mip_solve.mip_lower_bound == 4.0
|
assert features.mip_solve.mip_lower_bound == 4.0
|
||||||
assert features.mip_solve.mip_upper_bound == 4.0
|
assert features.mip_solve.mip_upper_bound == 4.0
|
||||||
@@ -79,12 +74,23 @@ def test_subtour() -> None:
|
|||||||
lazy_enforced = features.extra["lazy_enforced"]
|
lazy_enforced = features.extra["lazy_enforced"]
|
||||||
assert lazy_enforced is not None
|
assert lazy_enforced is not None
|
||||||
assert len(lazy_enforced) > 0
|
assert len(lazy_enforced) > 0
|
||||||
assert features.variables_old is not None
|
assert features.variables is not None
|
||||||
assert features.variables_old["x[(0, 1)]"].value == 1.0
|
assert features.variables.values == (
|
||||||
assert features.variables_old["x[(0, 4)]"].value == 1.0
|
1.0,
|
||||||
assert features.variables_old["x[(1, 2)]"].value == 1.0
|
0.0,
|
||||||
assert features.variables_old["x[(2, 3)]"].value == 1.0
|
0.0,
|
||||||
assert features.variables_old["x[(3, 5)]"].value == 1.0
|
1.0,
|
||||||
assert features.variables_old["x[(4, 5)]"].value == 1.0
|
0.0,
|
||||||
|
1.0,
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
1.0,
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
1.0,
|
||||||
|
1.0,
|
||||||
|
)
|
||||||
solver.fit([instance])
|
solver.fit([instance])
|
||||||
solver.solve(instance)
|
solver.solve(instance)
|
||||||
|
|||||||
@@ -16,6 +16,7 @@ from miplearn.solvers.internal import InternalSolver
|
|||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
|
||||||
# noinspection PyUnresolvedReferences
|
# noinspection PyUnresolvedReferences
|
||||||
|
from miplearn.solvers.tests import _round
|
||||||
from tests.solvers.test_internal_solver import internal_solvers
|
from tests.solvers.test_internal_solver import internal_solvers
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -39,12 +40,9 @@ def test_learning_solver(
|
|||||||
|
|
||||||
after_mip = sample.after_mip
|
after_mip = sample.after_mip
|
||||||
assert after_mip is not None
|
assert after_mip is not None
|
||||||
assert after_mip.variables_old is not None
|
assert after_mip.variables is not None
|
||||||
|
assert after_mip.variables.values == (1.0, 0.0, 1.0, 1.0, 61.0)
|
||||||
assert after_mip.mip_solve is not None
|
assert after_mip.mip_solve is not None
|
||||||
assert after_mip.variables_old["x[0]"].value == 1.0
|
|
||||||
assert after_mip.variables_old["x[1]"].value == 0.0
|
|
||||||
assert after_mip.variables_old["x[2]"].value == 1.0
|
|
||||||
assert after_mip.variables_old["x[3]"].value == 1.0
|
|
||||||
assert after_mip.mip_solve.mip_lower_bound == 1183.0
|
assert after_mip.mip_solve.mip_lower_bound == 1183.0
|
||||||
assert after_mip.mip_solve.mip_upper_bound == 1183.0
|
assert after_mip.mip_solve.mip_upper_bound == 1183.0
|
||||||
assert after_mip.mip_solve.mip_log is not None
|
assert after_mip.mip_solve.mip_log is not None
|
||||||
@@ -52,16 +50,9 @@ def test_learning_solver(
|
|||||||
|
|
||||||
after_lp = sample.after_lp
|
after_lp = sample.after_lp
|
||||||
assert after_lp is not None
|
assert after_lp is not None
|
||||||
assert after_lp.variables_old is not None
|
assert after_lp.variables is not None
|
||||||
|
assert _round(after_lp.variables.values) == (1.0, 0.923077, 1.0, 0.0, 67.0)
|
||||||
assert after_lp.lp_solve is not None
|
assert after_lp.lp_solve is not None
|
||||||
assert after_lp.variables_old["x[0]"].value is not None
|
|
||||||
assert after_lp.variables_old["x[1]"].value is not None
|
|
||||||
assert after_lp.variables_old["x[2]"].value is not None
|
|
||||||
assert after_lp.variables_old["x[3]"].value is not None
|
|
||||||
assert round(after_lp.variables_old["x[0]"].value, 3) == 1.000
|
|
||||||
assert round(after_lp.variables_old["x[1]"].value, 3) == 0.923
|
|
||||||
assert round(after_lp.variables_old["x[2]"].value, 3) == 1.000
|
|
||||||
assert round(after_lp.variables_old["x[3]"].value, 3) == 0.000
|
|
||||||
assert after_lp.lp_solve.lp_value is not None
|
assert after_lp.lp_solve.lp_value is not None
|
||||||
assert round(after_lp.lp_solve.lp_value, 3) == 1287.923
|
assert round(after_lp.lp_solve.lp_value, 3) == 1287.923
|
||||||
assert after_lp.lp_solve.lp_log is not None
|
assert after_lp.lp_solve.lp_log is not None
|
||||||
|
|||||||
@@ -5,14 +5,12 @@
|
|||||||
from miplearn.features import (
|
from miplearn.features import (
|
||||||
FeaturesExtractor,
|
FeaturesExtractor,
|
||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
Variable,
|
|
||||||
Constraint,
|
Constraint,
|
||||||
VariableFeatures,
|
VariableFeatures,
|
||||||
)
|
)
|
||||||
from miplearn.solvers.gurobi import GurobiSolver
|
from miplearn.solvers.gurobi import GurobiSolver
|
||||||
from miplearn.solvers.tests import (
|
from miplearn.solvers.tests import (
|
||||||
assert_equals,
|
assert_equals,
|
||||||
_round_variables,
|
|
||||||
_round_constraints,
|
_round_constraints,
|
||||||
_round,
|
_round,
|
||||||
)
|
)
|
||||||
@@ -28,7 +26,7 @@ def test_knapsack() -> None:
|
|||||||
solver.solve_lp()
|
solver.solve_lp()
|
||||||
|
|
||||||
features = FeaturesExtractor(solver).extract(instance)
|
features = FeaturesExtractor(solver).extract(instance)
|
||||||
assert features.variables_old is not None
|
assert features.variables is not None
|
||||||
assert features.constraints is not None
|
assert features.constraints is not None
|
||||||
assert features.instance is not None
|
assert features.instance is not None
|
||||||
|
|
||||||
@@ -57,6 +55,13 @@ def test_knapsack() -> None:
|
|||||||
None,
|
None,
|
||||||
),
|
),
|
||||||
values=(1.0, 0.923077, 1.0, 0.0, 67.0),
|
values=(1.0, 0.923077, 1.0, 0.0, 67.0),
|
||||||
|
alvarez_2017=[
|
||||||
|
[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 46.051702],
|
||||||
|
[1.0, 0.229316, 0.0, 0.076923, 1.0, 1.0, 3.532875, 5.388476],
|
||||||
|
[1.0, 0.298371, 0.0, 0.0, 1.0, 1.0, 5.232342, 46.051702],
|
||||||
|
[1.0, 0.143322, 0.0, 0.0, 1.0, -1.0, 46.051702, 3.16515],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],
|
||||||
|
],
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
|
|||||||
Reference in New Issue
Block a user