mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Use compact variable features everywhere
This commit is contained in:
@@ -104,7 +104,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
def sample_predict(self, sample: Sample) -> Solution:
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.variables_old is not None
|
||||
assert sample.after_load.variables is not None
|
||||
|
||||
# Compute y_pred
|
||||
x, _ = self.sample_xy(None, sample)
|
||||
@@ -125,10 +125,12 @@ class PrimalSolutionComponent(Component):
|
||||
).T
|
||||
|
||||
# Convert y_pred into solution
|
||||
solution: Solution = {v: None for v in sample.after_load.variables_old.keys()}
|
||||
assert sample.after_load.variables.names is not None
|
||||
assert sample.after_load.variables.categories is not None
|
||||
solution: Solution = {v: None for v in sample.after_load.variables.names}
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_features) in sample.after_load.variables_old.items():
|
||||
category = var_features.category
|
||||
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||
category = sample.after_load.variables.categories[i]
|
||||
if category not in category_offset:
|
||||
continue
|
||||
offset = category_offset[category]
|
||||
@@ -150,10 +152,13 @@ class PrimalSolutionComponent(Component):
|
||||
y: Dict = {}
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.instance is not None
|
||||
assert sample.after_load.variables_old is not None
|
||||
for (var_name, var) in sample.after_load.variables_old.items():
|
||||
assert sample.after_load.variables is not None
|
||||
assert sample.after_load.variables.names is not None
|
||||
assert sample.after_load.variables.categories is not None
|
||||
|
||||
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
||||
# Initialize categories
|
||||
category = var.category
|
||||
category = sample.after_load.variables.categories[i]
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
@@ -162,17 +167,17 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Features
|
||||
features = list(sample.after_load.instance.to_list())
|
||||
features.extend(sample.after_load.variables_old[var_name].to_list())
|
||||
features.extend(sample.after_load.variables.to_list(i))
|
||||
if sample.after_lp is not None:
|
||||
assert sample.after_lp.variables_old is not None
|
||||
features.extend(sample.after_lp.variables_old[var_name].to_list())
|
||||
assert sample.after_lp.variables is not None
|
||||
features.extend(sample.after_lp.variables.to_list(i))
|
||||
x[category].append(features)
|
||||
|
||||
# Labels
|
||||
if sample.after_mip is not None:
|
||||
assert sample.after_mip.variables_old is not None
|
||||
assert sample.after_mip.variables_old[var_name] is not None
|
||||
opt_value = sample.after_mip.variables_old[var_name].value
|
||||
assert sample.after_mip.variables is not None
|
||||
assert sample.after_mip.variables.values is not None
|
||||
opt_value = sample.after_mip.variables.values[i]
|
||||
assert opt_value is not None
|
||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
||||
@@ -190,15 +195,18 @@ class PrimalSolutionComponent(Component):
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.variables_old is not None
|
||||
assert sample.after_mip.variables is not None
|
||||
assert sample.after_mip.variables.values is not None
|
||||
assert sample.after_mip.variables.names is not None
|
||||
|
||||
solution_actual = sample.after_mip.variables_old
|
||||
solution_actual = {
|
||||
var_name: sample.after_mip.variables.values[i]
|
||||
for (i, var_name) in enumerate(sample.after_mip.variables.names)
|
||||
}
|
||||
solution_pred = self.sample_predict(sample)
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
for (var_name, var) in solution_actual.items():
|
||||
assert var.value is not None
|
||||
value_actual = var.value
|
||||
for (var_name, value_actual) in solution_actual.items():
|
||||
vars_all.add(var_name)
|
||||
if value_actual > 0.5:
|
||||
vars_one.add(var_name)
|
||||
|
||||
@@ -10,8 +10,6 @@ from typing import TYPE_CHECKING, Dict, Optional, List, Hashable, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.types import Category
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
|
||||
from miplearn.instance.base import Instance
|
||||
@@ -49,49 +47,31 @@ class VariableFeatures:
|
||||
user_features: Optional[Tuple[Optional[Tuple[float, ...]], ...]] = None
|
||||
values: Optional[Tuple[float, ...]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Variable:
|
||||
basis_status: Optional[str] = None
|
||||
category: Optional[Hashable] = None
|
||||
lower_bound: Optional[float] = None
|
||||
obj_coeff: Optional[float] = None
|
||||
reduced_cost: Optional[float] = None
|
||||
sa_lb_down: Optional[float] = None
|
||||
sa_lb_up: Optional[float] = None
|
||||
sa_obj_down: Optional[float] = None
|
||||
sa_obj_up: Optional[float] = None
|
||||
sa_ub_down: Optional[float] = None
|
||||
sa_ub_up: Optional[float] = None
|
||||
type: Optional[str] = None
|
||||
upper_bound: Optional[float] = None
|
||||
user_features: Optional[List[float]] = None
|
||||
value: Optional[float] = None
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
alvarez_2017: Optional[List[float]] = None
|
||||
alvarez_2017: Optional[List[List[float]]] = None
|
||||
|
||||
def to_list(self) -> List[float]:
|
||||
def to_list(self, index: int) -> List[float]:
|
||||
features: List[float] = []
|
||||
for attr in [
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
"lower_bounds",
|
||||
"obj_coeffs",
|
||||
"reduced_costs",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"upper_bound",
|
||||
"value",
|
||||
"upper_bounds",
|
||||
"values",
|
||||
]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.append(getattr(self, attr))
|
||||
features.append(getattr(self, attr)[index])
|
||||
for attr in ["user_features", "alvarez_2017"]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.extend(getattr(self, attr))
|
||||
if getattr(self, attr)[index] is not None:
|
||||
features.extend(getattr(self, attr)[index])
|
||||
_clip(features)
|
||||
return features
|
||||
|
||||
@@ -136,7 +116,6 @@ class Constraint:
|
||||
class Features:
|
||||
instance: Optional[InstanceFeatures] = None
|
||||
variables: Optional[VariableFeatures] = None
|
||||
variables_old: Optional[Dict[str, Variable]] = None
|
||||
constraints: Optional[Dict[str, Constraint]] = None
|
||||
lp_solve: Optional["LPSolveStats"] = None
|
||||
mip_solve: Optional["MIPSolveStats"] = None
|
||||
@@ -169,51 +148,16 @@ class FeaturesExtractor:
|
||||
with_static=with_static,
|
||||
with_sa=self.with_sa,
|
||||
)
|
||||
features.variables_old = self.solver.get_variables_old(
|
||||
with_static=with_static,
|
||||
)
|
||||
features.constraints = self.solver.get_constraints(
|
||||
with_static=with_static,
|
||||
)
|
||||
if with_static:
|
||||
self._extract_user_features_vars(instance, features)
|
||||
self._extract_user_features_vars_old(instance, features)
|
||||
self._extract_user_features_constrs(instance, features)
|
||||
self._extract_user_features_instance(instance, features)
|
||||
self._extract_alvarez_2017(features)
|
||||
return features
|
||||
|
||||
def _extract_user_features_vars_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.variables_old is not None
|
||||
for (var_name, var) in features.variables_old.items():
|
||||
user_features: Optional[List[float]] = None
|
||||
category: Category = instance.get_variable_category(var_name)
|
||||
if category is not None:
|
||||
assert isinstance(category, collections.Hashable), (
|
||||
f"Variable category must be be hashable. "
|
||||
f"Found {type(category).__name__} instead for var={var_name}."
|
||||
)
|
||||
user_features = instance.get_variable_features(var_name)
|
||||
if isinstance(user_features, np.ndarray):
|
||||
user_features = user_features.tolist()
|
||||
assert isinstance(user_features, list), (
|
||||
f"Variable features must be a list. "
|
||||
f"Found {type(user_features).__name__} instead for "
|
||||
f"var={var_name}."
|
||||
)
|
||||
for v in user_features:
|
||||
assert isinstance(v, numbers.Real), (
|
||||
f"Variable features must be a list of numbers. "
|
||||
f"Found {type(v).__name__} instead "
|
||||
f"for var={var_name}."
|
||||
)
|
||||
var.category = category
|
||||
var.user_features = user_features
|
||||
|
||||
def _extract_user_features_vars(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -312,72 +256,80 @@ class FeaturesExtractor:
|
||||
)
|
||||
|
||||
def _extract_alvarez_2017(self, features: Features) -> None:
|
||||
assert features.variables_old is not None
|
||||
assert features.variables is not None
|
||||
assert features.variables.names is not None
|
||||
|
||||
obj_coeffs = features.variables.obj_coeffs
|
||||
obj_sa_down = features.variables.sa_obj_down
|
||||
obj_sa_up = features.variables.sa_obj_up
|
||||
values = features.variables.values
|
||||
|
||||
pos_obj_coeff_sum = 0.0
|
||||
neg_obj_coeff_sum = 0.0
|
||||
for (varname, var) in features.variables_old.items():
|
||||
if var.obj_coeff is not None:
|
||||
if var.obj_coeff > 0:
|
||||
pos_obj_coeff_sum += var.obj_coeff
|
||||
if var.obj_coeff < 0:
|
||||
neg_obj_coeff_sum += -var.obj_coeff
|
||||
if obj_coeffs is not None:
|
||||
for coeff in obj_coeffs:
|
||||
if coeff > 0:
|
||||
pos_obj_coeff_sum += coeff
|
||||
if coeff < 0:
|
||||
neg_obj_coeff_sum += -coeff
|
||||
|
||||
for (varname, var) in features.variables_old.items():
|
||||
assert isinstance(var, Variable)
|
||||
features.variables.alvarez_2017 = []
|
||||
for i in range(len(features.variables.names)):
|
||||
f: List[float] = []
|
||||
if var.obj_coeff is not None:
|
||||
if obj_coeffs is not None:
|
||||
# Feature 1
|
||||
f.append(np.sign(var.obj_coeff))
|
||||
f.append(np.sign(obj_coeffs[i]))
|
||||
|
||||
# Feature 2
|
||||
if pos_obj_coeff_sum > 0:
|
||||
f.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
||||
f.append(abs(obj_coeffs[i]) / pos_obj_coeff_sum)
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 3
|
||||
if neg_obj_coeff_sum > 0:
|
||||
f.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
||||
f.append(abs(obj_coeffs[i]) / neg_obj_coeff_sum)
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
if var.value is not None:
|
||||
if values is not None:
|
||||
# Feature 37
|
||||
f.append(
|
||||
min(
|
||||
var.value - np.floor(var.value),
|
||||
np.ceil(var.value) - var.value,
|
||||
values[i] - np.floor(values[i]),
|
||||
np.ceil(values[i]) - values[i],
|
||||
)
|
||||
)
|
||||
|
||||
if var.sa_obj_up is not None:
|
||||
assert var.obj_coeff is not None
|
||||
assert var.sa_obj_down is not None
|
||||
if obj_sa_up is not None:
|
||||
assert obj_sa_down is not None
|
||||
assert obj_coeffs is not None
|
||||
|
||||
# Convert inf into large finite numbers
|
||||
sa_obj_down = max(-1e20, var.sa_obj_down)
|
||||
sa_obj_up = min(1e20, var.sa_obj_up)
|
||||
sd = max(-1e20, obj_sa_down[i])
|
||||
su = min(1e20, obj_sa_up[i])
|
||||
obj = obj_coeffs[i]
|
||||
|
||||
# Features 44 and 46
|
||||
f.append(np.sign(var.sa_obj_up))
|
||||
f.append(np.sign(var.sa_obj_down))
|
||||
f.append(np.sign(obj_sa_up[i]))
|
||||
f.append(np.sign(obj_sa_down[i]))
|
||||
|
||||
# Feature 47
|
||||
csign = np.sign(var.obj_coeff)
|
||||
if csign != 0 and ((var.obj_coeff - sa_obj_down) / csign) > 0.001:
|
||||
f.append(log((var.obj_coeff - sa_obj_down) / csign))
|
||||
csign = np.sign(obj)
|
||||
if csign != 0 and ((obj - sd) / csign) > 0.001:
|
||||
f.append(log((obj - sd) / csign))
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 48
|
||||
if csign != 0 and ((sa_obj_up - var.obj_coeff) / csign) > 0.001:
|
||||
f.append(log((sa_obj_up - var.obj_coeff) / csign))
|
||||
if csign != 0 and ((su - obj) / csign) > 0.001:
|
||||
f.append(log((su - obj) / csign))
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
for v in f:
|
||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||
var.alvarez_2017 = f
|
||||
features.variables.alvarez_2017.append(f)
|
||||
|
||||
|
||||
def _clip(v: List[float]) -> None:
|
||||
|
||||
@@ -6,11 +6,11 @@ import re
|
||||
import sys
|
||||
from io import StringIO
|
||||
from random import randint
|
||||
from typing import List, Any, Dict, Optional, Hashable, Tuple, cast, TYPE_CHECKING
|
||||
from typing import List, Any, Dict, Optional, Hashable, Tuple, TYPE_CHECKING
|
||||
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
||||
from miplearn.features import Constraint, VariableFeatures
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
@@ -289,89 +289,6 @@ class GurobiSolver(InternalSolver):
|
||||
"values",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_variables_old(
|
||||
self,
|
||||
with_static: bool = True,
|
||||
with_sa: bool = True,
|
||||
) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
|
||||
names = self._var_names
|
||||
ub = self._var_ubs
|
||||
lb = self._var_lbs
|
||||
obj_coeff = self._var_obj_coeffs
|
||||
|
||||
values = None
|
||||
rc = None
|
||||
sa_obj_up = None
|
||||
sa_obj_down = None
|
||||
sa_ub_up = None
|
||||
sa_ub_down = None
|
||||
sa_lb_up = None
|
||||
sa_lb_down = None
|
||||
vbasis = None
|
||||
|
||||
if self.model.solCount > 0:
|
||||
values = self.model.getAttr("x", self._gp_vars)
|
||||
|
||||
if self._has_lp_solution:
|
||||
rc = self.model.getAttr("rc", self._gp_vars)
|
||||
vbasis = self.model.getAttr("vbasis", self._gp_vars)
|
||||
if with_sa:
|
||||
sa_obj_up = self.model.getAttr("saobjUp", self._gp_vars)
|
||||
sa_obj_down = self.model.getAttr("saobjLow", self._gp_vars)
|
||||
sa_ub_up = self.model.getAttr("saubUp", self._gp_vars)
|
||||
sa_ub_down = self.model.getAttr("saubLow", self._gp_vars)
|
||||
sa_lb_up = self.model.getAttr("salbUp", self._gp_vars)
|
||||
sa_lb_down = self.model.getAttr("salbLow", self._gp_vars)
|
||||
|
||||
variables = {}
|
||||
for (i, gp_var) in enumerate(self._gp_vars):
|
||||
assert len(names[i]) > 0, "Empty variable name detected."
|
||||
assert (
|
||||
names[i] not in variables
|
||||
), f"Duplicated variable name detected: {names[i]}"
|
||||
var = Variable()
|
||||
if with_static:
|
||||
assert lb is not None
|
||||
assert ub is not None
|
||||
assert obj_coeff is not None
|
||||
var.lower_bound = lb[i]
|
||||
var.upper_bound = ub[i]
|
||||
var.obj_coeff = obj_coeff[i]
|
||||
var.type = self._var_types[i]
|
||||
if values is not None:
|
||||
var.value = values[i]
|
||||
if rc is not None:
|
||||
assert vbasis is not None
|
||||
var.reduced_cost = rc[i]
|
||||
if vbasis[i] == 0:
|
||||
var.basis_status = "B"
|
||||
elif vbasis[i] == -1:
|
||||
var.basis_status = "L"
|
||||
elif vbasis[i] == -2:
|
||||
var.basis_status = "U"
|
||||
elif vbasis[i] == -3:
|
||||
var.basis_status = "S"
|
||||
else:
|
||||
raise Exception(f"unknown vbasis: {vbasis}")
|
||||
if with_sa:
|
||||
assert sa_obj_up is not None
|
||||
assert sa_obj_down is not None
|
||||
assert sa_ub_up is not None
|
||||
assert sa_ub_down is not None
|
||||
assert sa_lb_up is not None
|
||||
assert sa_lb_down is not None
|
||||
var.sa_obj_up = sa_obj_up[i]
|
||||
var.sa_obj_down = sa_obj_down[i]
|
||||
var.sa_ub_up = sa_ub_up[i]
|
||||
var.sa_ub_down = sa_ub_down[i]
|
||||
var.sa_lb_up = sa_lb_up[i]
|
||||
var.sa_lb_down = sa_lb_down[i]
|
||||
variables[names[i]] = var
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def get_variables(
|
||||
self,
|
||||
@@ -651,27 +568,6 @@ class GurobiSolver(InternalSolver):
|
||||
"get_value cannot be called from cb_where=%s" % self.cb_where
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_gurobi_var_lp(gp_var: Any, var: Variable) -> None:
|
||||
var.reduced_cost = gp_var.rc
|
||||
var.sa_obj_up = gp_var.saobjUp
|
||||
var.sa_obj_down = gp_var.saobjLow
|
||||
var.sa_ub_up = gp_var.saubUp
|
||||
var.sa_ub_down = gp_var.saubLow
|
||||
var.sa_lb_up = gp_var.salbUp
|
||||
var.sa_lb_down = gp_var.salbLow
|
||||
vbasis = gp_var.vbasis
|
||||
if vbasis == 0:
|
||||
var.basis_status = "B"
|
||||
elif vbasis == -1:
|
||||
var.basis_status = "L"
|
||||
elif vbasis == -2:
|
||||
var.basis_status = "U"
|
||||
elif vbasis == -3:
|
||||
var.basis_status = "S"
|
||||
else:
|
||||
raise Exception(f"unknown vbasis: {vbasis}")
|
||||
|
||||
def _raise_if_callback(self) -> None:
|
||||
if self.cb_where is not None:
|
||||
raise Exception("method cannot be called from a callback")
|
||||
|
||||
@@ -9,7 +9,7 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
from overrides import EnforceOverrides
|
||||
|
||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
||||
from miplearn.features import Constraint, VariableFeatures
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import (
|
||||
IterationCallback,
|
||||
@@ -17,7 +17,6 @@ from miplearn.types import (
|
||||
BranchPriorities,
|
||||
UserCutCallback,
|
||||
Solution,
|
||||
VariableName,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -236,10 +235,6 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
"""
|
||||
return False
|
||||
|
||||
@abstractmethod
|
||||
def get_variables_old(self, with_static: bool = True) -> Dict[str, Variable]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_variables(
|
||||
self,
|
||||
|
||||
@@ -19,7 +19,7 @@ from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
||||
from pyomo.opt import TerminationCondition
|
||||
from pyomo.opt.base.solvers import SolverFactory
|
||||
|
||||
from miplearn.features import Variable, VariableFeatures
|
||||
from miplearn.features import VariableFeatures
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
@@ -175,21 +175,6 @@ class BasePyomoSolver(InternalSolver):
|
||||
solution[f"{var}[{index}]"] = var[index].value
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def get_variables_old(self, with_static: bool = True) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for var in self.model.component_objects(pyomo.core.Var):
|
||||
for idx in var:
|
||||
varname = f"{var}[{idx}]"
|
||||
if idx is None:
|
||||
varname = str(var)
|
||||
variables[varname] = self._parse_pyomo_variable(
|
||||
var[idx],
|
||||
with_static=with_static,
|
||||
)
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def get_variables(
|
||||
self,
|
||||
@@ -495,49 +480,6 @@ class BasePyomoSolver(InternalSolver):
|
||||
def _get_warm_start_regexp(self) -> Optional[str]:
|
||||
return None
|
||||
|
||||
def _parse_pyomo_variable(
|
||||
self,
|
||||
pyomo_var: pyomo.core.Var,
|
||||
with_static: bool = True,
|
||||
) -> Variable:
|
||||
assert self.model is not None
|
||||
variable = Variable()
|
||||
|
||||
if with_static:
|
||||
# Variable type
|
||||
vtype: Optional[str] = None
|
||||
if pyomo_var.domain == pyomo.core.Binary:
|
||||
vtype = "B"
|
||||
elif pyomo_var.domain in [
|
||||
pyomo.core.Reals,
|
||||
pyomo.core.NonNegativeReals,
|
||||
pyomo.core.NonPositiveReals,
|
||||
pyomo.core.NegativeReals,
|
||||
pyomo.core.PositiveReals,
|
||||
]:
|
||||
vtype = "C"
|
||||
if vtype is None:
|
||||
raise Exception(f"unknown variable domain: {pyomo_var.domain}")
|
||||
variable.type = vtype
|
||||
|
||||
# Bounds
|
||||
lb, ub = pyomo_var.bounds
|
||||
variable.upper_bound = float(ub)
|
||||
variable.lower_bound = float(lb)
|
||||
|
||||
# Objective coefficient
|
||||
obj_coeff = 0.0
|
||||
if pyomo_var.name in self._obj:
|
||||
obj_coeff = self._obj[pyomo_var.name]
|
||||
variable.obj_coeff = obj_coeff
|
||||
|
||||
# Reduced costs
|
||||
if pyomo_var in self.model.rc:
|
||||
variable.reduced_cost = self.model.rc[pyomo_var]
|
||||
|
||||
variable.value = pyomo_var.value
|
||||
return variable
|
||||
|
||||
def _parse_pyomo_constraint(
|
||||
self,
|
||||
pyomo_constr: pyomo.core.Constraint,
|
||||
|
||||
@@ -3,14 +3,12 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Optional, List, Dict
|
||||
from typing import Optional
|
||||
|
||||
from overrides import overrides
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from miplearn.features import Variable
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.types import SolverParams, BranchPriorities
|
||||
|
||||
|
||||
@@ -3,9 +3,8 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Any, Dict, List
|
||||
import numpy as np
|
||||
|
||||
from miplearn.features import Constraint, Variable, VariableFeatures
|
||||
from miplearn.features import Constraint, VariableFeatures
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
|
||||
inf = float("inf")
|
||||
@@ -22,33 +21,15 @@ def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constrai
|
||||
return constraints
|
||||
|
||||
|
||||
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
|
||||
for (cname, c) in vars.items():
|
||||
for attr in [
|
||||
"upper_bound",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"value",
|
||||
"reduced_cost",
|
||||
"sa_obj_up",
|
||||
"sa_obj_down",
|
||||
"sa_ub_up",
|
||||
"sa_ub_down",
|
||||
"sa_lb_up",
|
||||
"sa_lb_down",
|
||||
]:
|
||||
if getattr(c, attr) is not None:
|
||||
setattr(c, attr, round(getattr(c, attr), 6))
|
||||
if c.alvarez_2017 is not None:
|
||||
c.alvarez_2017 = list(np.round(c.alvarez_2017, 6))
|
||||
return vars
|
||||
|
||||
|
||||
def _round(obj: Any) -> Any:
|
||||
if isinstance(obj, tuple):
|
||||
if obj is None:
|
||||
return None
|
||||
return tuple([round(v, 6) for v in obj])
|
||||
if isinstance(obj, float):
|
||||
return round(obj, 6)
|
||||
if isinstance(obj, tuple):
|
||||
return tuple([_round(v) for v in obj])
|
||||
if isinstance(obj, list):
|
||||
return [_round(v) for v in obj]
|
||||
if isinstance(obj, VariableFeatures):
|
||||
obj.reduced_costs = _round(obj.reduced_costs)
|
||||
obj.sa_obj_up = _round(obj.sa_obj_up)
|
||||
@@ -58,6 +39,7 @@ def _round(obj: Any) -> Any:
|
||||
obj.sa_ub_up = _round(obj.sa_ub_up)
|
||||
obj.sa_ub_down = _round(obj.sa_ub_down)
|
||||
obj.values = _round(obj.values)
|
||||
obj.alvarez_2017 = _round(obj.alvarez_2017)
|
||||
return obj
|
||||
|
||||
|
||||
|
||||
@@ -13,10 +13,10 @@ from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.features import (
|
||||
Variable,
|
||||
Features,
|
||||
Sample,
|
||||
InstanceFeatures,
|
||||
VariableFeatures,
|
||||
)
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
@@ -28,39 +28,37 @@ def sample() -> Sample:
|
||||
sample = Sample(
|
||||
after_load=Features(
|
||||
instance=InstanceFeatures(),
|
||||
variables_old={
|
||||
"x[0]": Variable(category="default"),
|
||||
"x[1]": Variable(category=None),
|
||||
"x[2]": Variable(category="default"),
|
||||
"x[3]": Variable(category="default"),
|
||||
},
|
||||
variables=VariableFeatures(
|
||||
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||
categories=("default", None, "default", "default"),
|
||||
),
|
||||
),
|
||||
after_lp=Features(
|
||||
variables_old={
|
||||
"x[0]": Variable(),
|
||||
"x[1]": Variable(),
|
||||
"x[2]": Variable(),
|
||||
"x[3]": Variable(),
|
||||
},
|
||||
variables=VariableFeatures(),
|
||||
),
|
||||
after_mip=Features(
|
||||
variables_old={
|
||||
"x[0]": Variable(value=0.0),
|
||||
"x[1]": Variable(value=1.0),
|
||||
"x[2]": Variable(value=1.0),
|
||||
"x[3]": Variable(value=0.0),
|
||||
}
|
||||
variables=VariableFeatures(
|
||||
names=("x[0]", "x[1]", "x[2]", "x[3]"),
|
||||
values=(0.0, 1.0, 1.0, 0.0),
|
||||
)
|
||||
),
|
||||
)
|
||||
sample.after_load.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
||||
sample.after_lp.variables_old["x[0]"].to_list = Mock( # type: ignore
|
||||
return_value=[0.0, 0.0]
|
||||
sample.after_load.variables.to_list = Mock( # type:ignore
|
||||
side_effect=lambda i: [
|
||||
[0.0, 0.0],
|
||||
None,
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
][i]
|
||||
)
|
||||
sample.after_lp.variables_old["x[2]"].to_list = Mock( # type: ignore
|
||||
return_value=[1.0, 0.0]
|
||||
)
|
||||
sample.after_lp.variables_old["x[3]"].to_list = Mock( # type: ignore
|
||||
return_value=[1.0, 1.0]
|
||||
sample.after_lp.variables.to_list = Mock( # type:ignore
|
||||
side_effect=lambda i: [
|
||||
[2.0, 2.0],
|
||||
None,
|
||||
[3.0, 2.0],
|
||||
[3.0, 3.0],
|
||||
][i]
|
||||
)
|
||||
return sample
|
||||
|
||||
@@ -68,9 +66,9 @@ def sample() -> Sample:
|
||||
def test_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
"default": [
|
||||
[5.0, 0.0, 0.0],
|
||||
[5.0, 1.0, 0.0],
|
||||
[5.0, 1.0, 1.0],
|
||||
[5.0, 0.0, 0.0, 2.0, 2.0],
|
||||
[5.0, 1.0, 0.0, 3.0, 2.0],
|
||||
[5.0, 1.0, 1.0, 3.0, 3.0],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
|
||||
@@ -43,13 +43,8 @@ def test_instance() -> None:
|
||||
assert instance.samples[0].after_mip is not None
|
||||
features = instance.samples[0].after_mip
|
||||
assert features is not None
|
||||
assert features.variables_old is not None
|
||||
assert features.variables_old["x[(0, 1)]"].value == 1.0
|
||||
assert features.variables_old["x[(0, 2)]"].value == 0.0
|
||||
assert features.variables_old["x[(0, 3)]"].value == 1.0
|
||||
assert features.variables_old["x[(1, 2)]"].value == 1.0
|
||||
assert features.variables_old["x[(1, 3)]"].value == 0.0
|
||||
assert features.variables_old["x[(2, 3)]"].value == 1.0
|
||||
assert features.variables is not None
|
||||
assert features.variables.values == (1.0, 0.0, 1.0, 1.0, 0.0, 1.0)
|
||||
assert features.mip_solve is not None
|
||||
assert features.mip_solve.mip_lower_bound == 4.0
|
||||
assert features.mip_solve.mip_upper_bound == 4.0
|
||||
@@ -79,12 +74,23 @@ def test_subtour() -> None:
|
||||
lazy_enforced = features.extra["lazy_enforced"]
|
||||
assert lazy_enforced is not None
|
||||
assert len(lazy_enforced) > 0
|
||||
assert features.variables_old is not None
|
||||
assert features.variables_old["x[(0, 1)]"].value == 1.0
|
||||
assert features.variables_old["x[(0, 4)]"].value == 1.0
|
||||
assert features.variables_old["x[(1, 2)]"].value == 1.0
|
||||
assert features.variables_old["x[(2, 3)]"].value == 1.0
|
||||
assert features.variables_old["x[(3, 5)]"].value == 1.0
|
||||
assert features.variables_old["x[(4, 5)]"].value == 1.0
|
||||
assert features.variables is not None
|
||||
assert features.variables.values == (
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
)
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
@@ -16,6 +16,7 @@ from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
# noinspection PyUnresolvedReferences
|
||||
from miplearn.solvers.tests import _round
|
||||
from tests.solvers.test_internal_solver import internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -39,12 +40,9 @@ def test_learning_solver(
|
||||
|
||||
after_mip = sample.after_mip
|
||||
assert after_mip is not None
|
||||
assert after_mip.variables_old is not None
|
||||
assert after_mip.variables is not None
|
||||
assert after_mip.variables.values == (1.0, 0.0, 1.0, 1.0, 61.0)
|
||||
assert after_mip.mip_solve is not None
|
||||
assert after_mip.variables_old["x[0]"].value == 1.0
|
||||
assert after_mip.variables_old["x[1]"].value == 0.0
|
||||
assert after_mip.variables_old["x[2]"].value == 1.0
|
||||
assert after_mip.variables_old["x[3]"].value == 1.0
|
||||
assert after_mip.mip_solve.mip_lower_bound == 1183.0
|
||||
assert after_mip.mip_solve.mip_upper_bound == 1183.0
|
||||
assert after_mip.mip_solve.mip_log is not None
|
||||
@@ -52,16 +50,9 @@ def test_learning_solver(
|
||||
|
||||
after_lp = sample.after_lp
|
||||
assert after_lp is not None
|
||||
assert after_lp.variables_old is not None
|
||||
assert after_lp.variables is not None
|
||||
assert _round(after_lp.variables.values) == (1.0, 0.923077, 1.0, 0.0, 67.0)
|
||||
assert after_lp.lp_solve is not None
|
||||
assert after_lp.variables_old["x[0]"].value is not None
|
||||
assert after_lp.variables_old["x[1]"].value is not None
|
||||
assert after_lp.variables_old["x[2]"].value is not None
|
||||
assert after_lp.variables_old["x[3]"].value is not None
|
||||
assert round(after_lp.variables_old["x[0]"].value, 3) == 1.000
|
||||
assert round(after_lp.variables_old["x[1]"].value, 3) == 0.923
|
||||
assert round(after_lp.variables_old["x[2]"].value, 3) == 1.000
|
||||
assert round(after_lp.variables_old["x[3]"].value, 3) == 0.000
|
||||
assert after_lp.lp_solve.lp_value is not None
|
||||
assert round(after_lp.lp_solve.lp_value, 3) == 1287.923
|
||||
assert after_lp.lp_solve.lp_log is not None
|
||||
|
||||
@@ -5,14 +5,12 @@
|
||||
from miplearn.features import (
|
||||
FeaturesExtractor,
|
||||
InstanceFeatures,
|
||||
Variable,
|
||||
Constraint,
|
||||
VariableFeatures,
|
||||
)
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.tests import (
|
||||
assert_equals,
|
||||
_round_variables,
|
||||
_round_constraints,
|
||||
_round,
|
||||
)
|
||||
@@ -28,7 +26,7 @@ def test_knapsack() -> None:
|
||||
solver.solve_lp()
|
||||
|
||||
features = FeaturesExtractor(solver).extract(instance)
|
||||
assert features.variables_old is not None
|
||||
assert features.variables is not None
|
||||
assert features.constraints is not None
|
||||
assert features.instance is not None
|
||||
|
||||
@@ -57,6 +55,13 @@ def test_knapsack() -> None:
|
||||
None,
|
||||
),
|
||||
values=(1.0, 0.923077, 1.0, 0.0, 67.0),
|
||||
alvarez_2017=[
|
||||
[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 46.051702],
|
||||
[1.0, 0.229316, 0.0, 0.076923, 1.0, 1.0, 3.532875, 5.388476],
|
||||
[1.0, 0.298371, 0.0, 0.0, 1.0, 1.0, 5.232342, 46.051702],
|
||||
[1.0, 0.143322, 0.0, 0.0, 1.0, -1.0, 46.051702, 3.16515],
|
||||
[0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],
|
||||
],
|
||||
),
|
||||
)
|
||||
assert_equals(
|
||||
|
||||
Reference in New Issue
Block a user