parent
bd1d2117c5
commit
996b16f1b7
@ -0,0 +1,205 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from .component import Component
|
||||||
|
from ..extractors import *
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from copy import deepcopy
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.pipeline import make_pipeline
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
from sklearn.model_selection import cross_val_score
|
||||||
|
from sklearn.metrics import roc_curve
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
import pyomo.environ as pe
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class AdaptivePredictor:
|
||||||
|
def __init__(self,
|
||||||
|
predictor=None,
|
||||||
|
min_samples_predict=1,
|
||||||
|
min_samples_cv=100,
|
||||||
|
thr_fix=0.999,
|
||||||
|
thr_alpha=0.50,
|
||||||
|
thr_balance=0.95,
|
||||||
|
):
|
||||||
|
self.min_samples_predict = min_samples_predict
|
||||||
|
self.min_samples_cv = min_samples_cv
|
||||||
|
self.thr_fix = thr_fix
|
||||||
|
self.thr_alpha = thr_alpha
|
||||||
|
self.thr_balance = thr_balance
|
||||||
|
self.predictor_factory = predictor
|
||||||
|
|
||||||
|
def fit(self, x_train, y_train):
|
||||||
|
n_samples = x_train.shape[0]
|
||||||
|
|
||||||
|
# If number of samples is too small, don't predict anything.
|
||||||
|
if n_samples < self.min_samples_predict:
|
||||||
|
logger.debug(" Too few samples (%d); always predicting false" % n_samples)
|
||||||
|
self.predictor = 0
|
||||||
|
return
|
||||||
|
|
||||||
|
# If vast majority of observations are false, always return false.
|
||||||
|
y_train_avg = np.average(y_train)
|
||||||
|
if y_train_avg <= 1.0 - self.thr_fix:
|
||||||
|
logger.debug(" Most samples are negative (%.3f); always returning false" % y_train_avg)
|
||||||
|
self.predictor = 0
|
||||||
|
return
|
||||||
|
|
||||||
|
# If vast majority of observations are true, always return true.
|
||||||
|
if y_train_avg >= self.thr_fix:
|
||||||
|
logger.debug(" Most samples are positive (%.3f); always returning true" % y_train_avg)
|
||||||
|
self.predictor = 1
|
||||||
|
return
|
||||||
|
|
||||||
|
# If classes are too unbalanced, don't predict anything.
|
||||||
|
if y_train_avg < (1 - self.thr_balance) or y_train_avg > self.thr_balance:
|
||||||
|
logger.debug(" Classes are too unbalanced (%.3f); always returning false" % y_train_avg)
|
||||||
|
self.predictor = 0
|
||||||
|
return
|
||||||
|
|
||||||
|
# Select ML model if none is provided
|
||||||
|
if self.predictor_factory is None:
|
||||||
|
if n_samples < 30:
|
||||||
|
self.predictor_factory = KNeighborsClassifier(n_neighbors=n_samples)
|
||||||
|
else:
|
||||||
|
self.predictor_factory = make_pipeline(StandardScaler(), LogisticRegression())
|
||||||
|
|
||||||
|
# Create predictor
|
||||||
|
if callable(self.predictor_factory):
|
||||||
|
pred = self.predictor_factory()
|
||||||
|
else:
|
||||||
|
pred = deepcopy(self.predictor_factory)
|
||||||
|
|
||||||
|
# Skip cross-validation if number of samples is too small
|
||||||
|
if n_samples < self.min_samples_cv:
|
||||||
|
logger.debug(" Too few samples (%d); skipping cross validation" % n_samples)
|
||||||
|
self.predictor = pred
|
||||||
|
self.predictor.fit(x_train, y_train)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Calculate cross-validation score
|
||||||
|
cv_score = np.mean(cross_val_score(pred, x_train, y_train, cv=5))
|
||||||
|
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
||||||
|
cv_thr = 1. * self.thr_alpha + dummy_score * (1 - self.thr_alpha)
|
||||||
|
|
||||||
|
# If cross-validation score is too low, don't predict anything.
|
||||||
|
if cv_score < cv_thr:
|
||||||
|
logger.debug(" Score is too low (%.3f < %.3f); always returning false" % (cv_score, cv_thr))
|
||||||
|
self.predictor = 0
|
||||||
|
else:
|
||||||
|
logger.debug(" Score is acceptable (%.3f > %.3f); training classifier" % (cv_score, cv_thr))
|
||||||
|
self.predictor = pred
|
||||||
|
self.predictor.fit(x_train, y_train)
|
||||||
|
|
||||||
|
def predict_proba(self, x_test):
|
||||||
|
if isinstance(self.predictor, int):
|
||||||
|
y_pred = np.zeros((x_test.shape[0], 2))
|
||||||
|
y_pred[:, self.predictor] = 1.0
|
||||||
|
return y_pred
|
||||||
|
else:
|
||||||
|
return self.predictor.predict_proba(x_test)
|
||||||
|
|
||||||
|
|
||||||
|
class PrimalSolutionComponent(Component):
|
||||||
|
"""
|
||||||
|
A component that predicts primal solutions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
predictor=AdaptivePredictor(),
|
||||||
|
mode="exact",
|
||||||
|
max_fpr=[1e-3, 1e-3],
|
||||||
|
min_threshold=[0.75, 0.75],
|
||||||
|
dynamic_thresholds=True,
|
||||||
|
):
|
||||||
|
self.mode = mode
|
||||||
|
self.predictors = {}
|
||||||
|
self.is_warm_start_available = False
|
||||||
|
self.max_fpr = max_fpr
|
||||||
|
self.min_threshold = min_threshold
|
||||||
|
self.thresholds = {}
|
||||||
|
self.predictor_factory = predictor
|
||||||
|
self.dynamic_thresholds = dynamic_thresholds
|
||||||
|
|
||||||
|
def before_solve(self, solver, instance, model):
|
||||||
|
solution = self.predict(instance, model)
|
||||||
|
if self.mode == "heuristic":
|
||||||
|
solver.internal_solver.fix(solution)
|
||||||
|
else:
|
||||||
|
solver.internal_solver.set_warm_start(solution)
|
||||||
|
|
||||||
|
def after_solve(self, solver, instance, model):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def fit(self, training_instances):
|
||||||
|
features = VariableFeaturesExtractor().extract(training_instances)
|
||||||
|
solutions = SolutionExtractor().extract(training_instances)
|
||||||
|
|
||||||
|
for category in tqdm(features.keys(), desc="Fit (Primal)"):
|
||||||
|
x_train = features[category]
|
||||||
|
y_train = solutions[category]
|
||||||
|
for label in [0, 1]:
|
||||||
|
logger.debug("Fitting predictors[%s, %s]:" % (category, label))
|
||||||
|
|
||||||
|
if callable(self.predictor_factory):
|
||||||
|
pred = self.predictor_factory(category, label)
|
||||||
|
else:
|
||||||
|
pred = deepcopy(self.predictor_factory)
|
||||||
|
self.predictors[category, label] = pred
|
||||||
|
y = y_train[:, label].astype(int)
|
||||||
|
pred.fit(x_train, y)
|
||||||
|
|
||||||
|
# If y is either always one or always zero, set fixed threshold
|
||||||
|
y_avg = np.average(y)
|
||||||
|
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
||||||
|
self.thresholds[category, label] = self.min_threshold[label]
|
||||||
|
logger.debug(" Setting threshold to %.4f" % self.min_threshold[label])
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Calculate threshold dynamically using ROC curve
|
||||||
|
y_scores = pred.predict_proba(x_train)[:, 1]
|
||||||
|
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
||||||
|
k = 0
|
||||||
|
while True:
|
||||||
|
if (k + 1) > len(fpr):
|
||||||
|
break
|
||||||
|
if fpr[k + 1] > self.max_fpr[label]:
|
||||||
|
break
|
||||||
|
if thresholds[k + 1] < self.min_threshold[label]:
|
||||||
|
break
|
||||||
|
k = k + 1
|
||||||
|
logger.debug(" Setting threshold to %.4f (fpr=%.4f, tpr=%.4f)"%
|
||||||
|
(thresholds[k], fpr[k], tpr[k]))
|
||||||
|
self.thresholds[category, label] = thresholds[k]
|
||||||
|
|
||||||
|
|
||||||
|
def predict(self, instance, model=None):
|
||||||
|
if model is None:
|
||||||
|
model = instance.to_model()
|
||||||
|
x_test = VariableFeaturesExtractor().extract([instance], [model])
|
||||||
|
solution = {}
|
||||||
|
var_split = Extractor.split_variables(instance, model)
|
||||||
|
for category in var_split.keys():
|
||||||
|
for (i, (var, index)) in enumerate(var_split[category]):
|
||||||
|
if var not in solution.keys():
|
||||||
|
solution[var] = {}
|
||||||
|
solution[var][index] = None
|
||||||
|
for label in [0, 1]:
|
||||||
|
if (category, label) not in self.predictors.keys():
|
||||||
|
continue
|
||||||
|
ws = self.predictors[category, label].predict_proba(x_test[category])
|
||||||
|
logger.debug("%s[%s] ws=%.6f threshold=%.6f" %
|
||||||
|
(var, index, ws[i, 1], self.thresholds[category, label]))
|
||||||
|
if ws[i, 1] >= self.thresholds[category, label]:
|
||||||
|
solution[var][index] = label
|
||||||
|
return solution
|
||||||
|
|
||||||
|
def merge(self, other_components):
|
||||||
|
pass
|
@ -0,0 +1,57 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from miplearn import LearningSolver, PrimalSolutionComponent
|
||||||
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
|
import numpy as np
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
|
||||||
|
def _get_instances():
|
||||||
|
instances = [
|
||||||
|
KnapsackInstance(
|
||||||
|
weights=[23., 26., 20., 18.],
|
||||||
|
prices=[505., 352., 458., 220.],
|
||||||
|
capacity=67.,
|
||||||
|
),
|
||||||
|
] * 5
|
||||||
|
models = [inst.to_model() for inst in instances]
|
||||||
|
solver = LearningSolver()
|
||||||
|
for i in range(len(instances)):
|
||||||
|
solver.solve(instances[i], models[i])
|
||||||
|
return instances, models
|
||||||
|
|
||||||
|
|
||||||
|
def test_predict():
|
||||||
|
instances, models = _get_instances()
|
||||||
|
comp = PrimalSolutionComponent()
|
||||||
|
comp.fit(instances)
|
||||||
|
solution = comp.predict(instances[0], models[0])
|
||||||
|
assert models[0].x in solution.keys()
|
||||||
|
assert solution[models[0].x][0] == 1
|
||||||
|
assert solution[models[0].x][1] == 1
|
||||||
|
assert solution[models[0].x][2] == 1
|
||||||
|
assert solution[models[0].x][3] == 1
|
||||||
|
|
||||||
|
# def test_warm_start_save_load():
|
||||||
|
# state_file = tempfile.NamedTemporaryFile(mode="r")
|
||||||
|
# solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
||||||
|
# solver.parallel_solve(_get_instances(), n_jobs=2)
|
||||||
|
# solver.fit()
|
||||||
|
# comp = solver.components["warm-start"]
|
||||||
|
# assert comp.x_train["default"].shape == (8, 6)
|
||||||
|
# assert comp.y_train["default"].shape == (8, 2)
|
||||||
|
# assert ("default", 0) in comp.predictors.keys()
|
||||||
|
# assert ("default", 1) in comp.predictors.keys()
|
||||||
|
# solver.save_state(state_file.name)
|
||||||
|
|
||||||
|
# solver.solve(_get_instances()[0])
|
||||||
|
|
||||||
|
# solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
||||||
|
# solver.load_state(state_file.name)
|
||||||
|
# comp = solver.components["warm-start"]
|
||||||
|
# assert comp.x_train["default"].shape == (8, 6)
|
||||||
|
# assert comp.y_train["default"].shape == (8, 2)
|
||||||
|
# assert ("default", 0) in comp.predictors.keys()
|
||||||
|
# assert ("default", 1) in comp.predictors.keys()
|
Loading…
Reference in new issue