Objective: Use LP value as feature

master
Alinson S. Xavier 5 years ago
parent fe47b0825f
commit 9abcea05cd

@ -108,9 +108,8 @@ class ObjectiveValueComponent(Component):
def x(instances: Union[List[str], List[Instance]]) -> np.ndarray: def x(instances: Union[List[str], List[Instance]]) -> np.ndarray:
result = [] result = []
for instance in InstanceIterator(instances): for instance in InstanceIterator(instances):
for _ in instance.training_data: for sample in instance.training_data:
instance_features = instance.get_instance_features() result.append(instance.get_instance_features() + [sample["LP value"]])
result.append(instance_features)
return np.array(result) return np.array(result)
@staticmethod @staticmethod

@ -23,10 +23,12 @@ def test_x_y_predict() -> None:
{ {
"Lower bound": 1.0, "Lower bound": 1.0,
"Upper bound": 2.0, "Upper bound": 2.0,
"LP value": 3.0,
}, },
{ {
"Lower bound": 1.5, "Lower bound": 1.5,
"Upper bound": 2.2, "Upper bound": 2.2,
"LP value": 3.4,
}, },
] ]
@ -41,7 +43,7 @@ def test_x_y_predict() -> None:
) )
# Should build x correctly # Should build x correctly
x_expected = np.array([[1.0, 2.0], [1.0, 2.0]]) x_expected = np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.4]])
assert_array_equal(comp.x([instance]), x_expected) assert_array_equal(comp.x([instance]), x_expected)
# Should build y correctly # Should build y correctly

Loading…
Cancel
Save