Objective: Use LP value as feature

master
Alinson S. Xavier 5 years ago
parent fe47b0825f
commit 9abcea05cd

@ -108,9 +108,8 @@ class ObjectiveValueComponent(Component):
def x(instances: Union[List[str], List[Instance]]) -> np.ndarray:
result = []
for instance in InstanceIterator(instances):
for _ in instance.training_data:
instance_features = instance.get_instance_features()
result.append(instance_features)
for sample in instance.training_data:
result.append(instance.get_instance_features() + [sample["LP value"]])
return np.array(result)
@staticmethod

@ -23,10 +23,12 @@ def test_x_y_predict() -> None:
{
"Lower bound": 1.0,
"Upper bound": 2.0,
"LP value": 3.0,
},
{
"Lower bound": 1.5,
"Upper bound": 2.2,
"LP value": 3.4,
},
]
@ -41,7 +43,7 @@ def test_x_y_predict() -> None:
)
# Should build x correctly
x_expected = np.array([[1.0, 2.0], [1.0, 2.0]])
x_expected = np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.4]])
assert_array_equal(comp.x([instance]), x_expected)
# Should build y correctly

Loading…
Cancel
Save