mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 17:38:51 -06:00
Add benchmark results for multidimensional knapsack
This commit is contained in:
1
docs-src/figures/benchmark_knapsack_a.png
Symbolic link
1
docs-src/figures/benchmark_knapsack_a.png
Symbolic link
@@ -0,0 +1 @@
|
||||
../../benchmark/knapsack/ChallengeA/performance.png
|
||||
@@ -45,10 +45,6 @@ MaxWeightStableSetGenerator(w=uniform(loc=100., scale=50.),
|
||||
fix_graph=True)
|
||||
```
|
||||
|
||||
### Benchmark results
|
||||
|
||||
#### Challenge A
|
||||
|
||||

|
||||
|
||||
## Multidimensional 0-1 Knapsack Problem
|
||||
@@ -98,4 +94,26 @@ By default, all generated prices, weights and capacities are rounded to the near
|
||||
|
||||
!!! note "References"
|
||||
* Freville, Arnaud, and Gérard Plateau. *An efficient preprocessing procedure for the multidimensional 0–1 knapsack problem.* Discrete applied mathematics 49.1-3 (1994): 189-212.
|
||||
* Fréville, Arnaud. *The multidimensional 0–1 knapsack problem: An overview.* European Journal of Operational Research 155.1 (2004): 1-21.
|
||||
* Fréville, Arnaud. *The multidimensional 0–1 knapsack problem: An overview.* European Journal of Operational Research 155.1 (2004): 1-21.
|
||||
|
||||
#### Challenge A
|
||||
|
||||
* 250 variables, 10 constraints, fixed weights
|
||||
* $w \sim U(0, 1000), \gamma \sim U(0.95, 1.05)$
|
||||
* $K = 500, u \sim U(0, 1), \alpha = 0.25$
|
||||
* 500 training instances, 50 test instances
|
||||
|
||||
|
||||
```python
|
||||
MultiKnapsackGenerator(n=randint(low=250, high=251),
|
||||
m=randint(low=10, high=11),
|
||||
w=uniform(loc=0.0, scale=1000.0),
|
||||
K=uniform(loc=500.0, scale=0.0),
|
||||
u=uniform(loc=0.0, scale=1.0),
|
||||
alpha=uniform(loc=0.25, scale=0.0),
|
||||
fix_w=True,
|
||||
w_jitter=uniform(loc=0.95, scale=0.1),
|
||||
)
|
||||
```
|
||||
|
||||

|
||||
|
||||
Reference in New Issue
Block a user