Add benchmark results for multidimensional knapsack

This commit is contained in:
2020-02-24 10:03:17 -06:00
parent 996b16f1b7
commit 9acffadabe
19 changed files with 547 additions and 278 deletions

View File

@@ -0,0 +1 @@
../../benchmark/knapsack/ChallengeA/performance.png

View File

@@ -45,10 +45,6 @@ MaxWeightStableSetGenerator(w=uniform(loc=100., scale=50.),
fix_graph=True)
```
### Benchmark results
#### Challenge A
![alt](figures/benchmark_stab_a.png)
## Multidimensional 0-1 Knapsack Problem
@@ -98,4 +94,26 @@ By default, all generated prices, weights and capacities are rounded to the near
!!! note "References"
* Freville, Arnaud, and Gérard Plateau. *An efficient preprocessing procedure for the multidimensional 01 knapsack problem.* Discrete applied mathematics 49.1-3 (1994): 189-212.
* Fréville, Arnaud. *The multidimensional 01 knapsack problem: An overview.* European Journal of Operational Research 155.1 (2004): 1-21.
* Fréville, Arnaud. *The multidimensional 01 knapsack problem: An overview.* European Journal of Operational Research 155.1 (2004): 1-21.
#### Challenge A
* 250 variables, 10 constraints, fixed weights
* $w \sim U(0, 1000), \gamma \sim U(0.95, 1.05)$
* $K = 500, u \sim U(0, 1), \alpha = 0.25$
* 500 training instances, 50 test instances
```python
MultiKnapsackGenerator(n=randint(low=250, high=251),
m=randint(low=10, high=11),
w=uniform(loc=0.0, scale=1000.0),
K=uniform(loc=500.0, scale=0.0),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
fix_w=True,
w_jitter=uniform(loc=0.95, scale=0.1),
)
```
![alt](figures/benchmark_knapsack_a.png)