mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 01:48:51 -06:00
Implement PrimalSolutionComponent; remove deprecated predictors
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import LearningSolver, BenchmarkRunner, KnnWarmStartPredictor
|
||||
from miplearn import LearningSolver, BenchmarkRunner
|
||||
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||
from scipy.stats import randint
|
||||
import numpy as np
|
||||
|
||||
@@ -4,10 +4,10 @@
|
||||
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn import (LearningSolver,
|
||||
UserFeaturesExtractor,
|
||||
SolutionExtractor,
|
||||
CombinedExtractor,
|
||||
InstanceFeaturesExtractor
|
||||
InstanceFeaturesExtractor,
|
||||
VariableFeaturesExtractor,
|
||||
)
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
@@ -31,16 +31,6 @@ def _get_instances():
|
||||
return instances, models
|
||||
|
||||
|
||||
def test_user_features_extractor():
|
||||
instances, models = _get_instances()
|
||||
extractor = UserFeaturesExtractor()
|
||||
features = extractor.extract(instances)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features.keys()
|
||||
assert isinstance(features["default"], np.ndarray)
|
||||
assert features["default"].shape == (6, 4)
|
||||
|
||||
|
||||
def test_solution_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = SolutionExtractor().extract(instances, models)
|
||||
@@ -60,16 +50,25 @@ def test_solution_extractor():
|
||||
|
||||
def test_combined_extractor():
|
||||
instances, models = _get_instances()
|
||||
extractor = CombinedExtractor(extractors=[UserFeaturesExtractor(),
|
||||
extractor = CombinedExtractor(extractors=[VariableFeaturesExtractor(),
|
||||
SolutionExtractor()])
|
||||
features = extractor.extract(instances, models)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features.keys()
|
||||
assert isinstance(features["default"], np.ndarray)
|
||||
assert features["default"].shape == (6, 6)
|
||||
assert features["default"].shape == (6, 7)
|
||||
|
||||
|
||||
def test_instance_features_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = InstanceFeaturesExtractor().extract(instances)
|
||||
assert features.shape == (2,3)
|
||||
assert features.shape == (2,3)
|
||||
|
||||
|
||||
def test_variable_features_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = VariableFeaturesExtractor().extract(instances)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features
|
||||
assert features["default"].shape == (6,5)
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import LearningSolver, BranchPriorityComponent, WarmStartComponent
|
||||
from miplearn import LearningSolver, BranchPriorityComponent
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
|
||||
|
||||
@@ -16,50 +16,52 @@ def _get_instance():
|
||||
|
||||
def test_solver():
|
||||
instance = _get_instance()
|
||||
for internal_solver in ["cplex", "gurobi"]:
|
||||
solver = LearningSolver(time_limit=300,
|
||||
gap_tolerance=1e-3,
|
||||
threads=1,
|
||||
solver=internal_solver,
|
||||
)
|
||||
results = solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
|
||||
assert round(instance.lp_solution["x"][0], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][1], 3) == 0.923
|
||||
assert round(instance.lp_solution["x"][2], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][3], 3) == 0.000
|
||||
assert round(instance.lp_value, 3) == 1287.923
|
||||
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
for mode in ["exact", "heuristic"]:
|
||||
for internal_solver in ["cplex", "gurobi"]:
|
||||
solver = LearningSolver(time_limit=300,
|
||||
gap_tolerance=1e-3,
|
||||
threads=1,
|
||||
solver=internal_solver,
|
||||
mode=mode,
|
||||
)
|
||||
results = solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
|
||||
assert round(instance.lp_solution["x"][0], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][1], 3) == 0.923
|
||||
assert round(instance.lp_solution["x"][2], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][3], 3) == 0.000
|
||||
assert round(instance.lp_value, 3) == 1287.923
|
||||
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
def test_solve_save_load_state():
|
||||
instance = _get_instance()
|
||||
components_before = {
|
||||
"warm-start": WarmStartComponent(),
|
||||
}
|
||||
solver = LearningSolver(components=components_before)
|
||||
solver.solve(instance)
|
||||
solver.fit()
|
||||
solver.save_state("/tmp/knapsack_train.bin")
|
||||
prev_x_train_len = len(solver.components["warm-start"].x_train)
|
||||
prev_y_train_len = len(solver.components["warm-start"].y_train)
|
||||
# def test_solve_save_load_state():
|
||||
# instance = _get_instance()
|
||||
# components_before = {
|
||||
# "warm-start": WarmStartComponent(),
|
||||
# }
|
||||
# solver = LearningSolver(components=components_before)
|
||||
# solver.solve(instance)
|
||||
# solver.fit()
|
||||
# solver.save_state("/tmp/knapsack_train.bin")
|
||||
# prev_x_train_len = len(solver.components["warm-start"].x_train)
|
||||
# prev_y_train_len = len(solver.components["warm-start"].y_train)
|
||||
|
||||
components_after = {
|
||||
"warm-start": WarmStartComponent(),
|
||||
}
|
||||
solver = LearningSolver(components=components_after)
|
||||
solver.load_state("/tmp/knapsack_train.bin")
|
||||
assert len(solver.components.keys()) == 1
|
||||
assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
||||
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||
# components_after = {
|
||||
# "warm-start": WarmStartComponent(),
|
||||
# }
|
||||
# solver = LearningSolver(components=components_after)
|
||||
# solver.load_state("/tmp/knapsack_train.bin")
|
||||
# assert len(solver.components.keys()) == 1
|
||||
# assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
||||
# assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
@@ -67,8 +69,6 @@ def test_parallel_solve():
|
||||
solver = LearningSolver()
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
# assert len(solver.components["warm-start"].x_train["default"]) == 40
|
||||
# assert len(solver.components["warm-start"].y_train["default"]) == 40
|
||||
for instance in instances:
|
||||
assert len(instance.solution["x"].keys()) == 4
|
||||
|
||||
|
||||
Reference in New Issue
Block a user