mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement PrimalSolutionComponent; remove deprecated predictors
This commit is contained in:
@@ -2,17 +2,15 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from .extractors import (UserFeaturesExtractor,
|
from .extractors import (SolutionExtractor,
|
||||||
SolutionExtractor,
|
|
||||||
CombinedExtractor,
|
CombinedExtractor,
|
||||||
InstanceFeaturesExtractor,
|
InstanceFeaturesExtractor,
|
||||||
ObjectiveValueExtractor,
|
ObjectiveValueExtractor,
|
||||||
|
VariableFeaturesExtractor,
|
||||||
)
|
)
|
||||||
from .components.component import Component
|
from .components.component import Component
|
||||||
from .components.objective import ObjectiveValueComponent
|
from .components.objective import ObjectiveValueComponent
|
||||||
from .components.warmstart import (WarmStartComponent,
|
from .components.primal import (PrimalSolutionComponent,
|
||||||
KnnWarmStartPredictor,
|
|
||||||
LogisticWarmStartPredictor,
|
|
||||||
AdaptivePredictor,
|
AdaptivePredictor,
|
||||||
)
|
)
|
||||||
from .components.branching import BranchPriorityComponent
|
from .components.branching import BranchPriorityComponent
|
||||||
|
|||||||
@@ -46,9 +46,9 @@ class BenchmarkRunner:
|
|||||||
for (name, solver) in self.solvers.items():
|
for (name, solver) in self.solvers.items():
|
||||||
solver.load_state(filename)
|
solver.load_state(filename)
|
||||||
|
|
||||||
def fit(self):
|
def fit(self, training_instances):
|
||||||
for (name, solver) in self.solvers.items():
|
for (name, solver) in self.solvers.items():
|
||||||
solver.fit()
|
solver.fit(training_instances)
|
||||||
|
|
||||||
def _push_result(self, result, solver, name, instance):
|
def _push_result(self, result, solver, name, instance):
|
||||||
if self.results is None:
|
if self.results is None:
|
||||||
|
|||||||
@@ -1,41 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from miplearn import WarmStartComponent, LearningSolver
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
|
||||||
import numpy as np
|
|
||||||
import tempfile
|
|
||||||
|
|
||||||
|
|
||||||
def _get_instances():
|
|
||||||
return [
|
|
||||||
KnapsackInstance(
|
|
||||||
weights=[23., 26., 20., 18.],
|
|
||||||
prices=[505., 352., 458., 220.],
|
|
||||||
capacity=67.,
|
|
||||||
),
|
|
||||||
] * 2
|
|
||||||
|
|
||||||
|
|
||||||
# def test_warm_start_save_load():
|
|
||||||
# state_file = tempfile.NamedTemporaryFile(mode="r")
|
|
||||||
# solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
|
||||||
# solver.parallel_solve(_get_instances(), n_jobs=2)
|
|
||||||
# solver.fit()
|
|
||||||
# comp = solver.components["warm-start"]
|
|
||||||
# assert comp.x_train["default"].shape == (8, 6)
|
|
||||||
# assert comp.y_train["default"].shape == (8, 2)
|
|
||||||
# assert ("default", 0) in comp.predictors.keys()
|
|
||||||
# assert ("default", 1) in comp.predictors.keys()
|
|
||||||
# solver.save_state(state_file.name)
|
|
||||||
|
|
||||||
# solver.solve(_get_instances()[0])
|
|
||||||
|
|
||||||
# solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
|
||||||
# solver.load_state(state_file.name)
|
|
||||||
# comp = solver.components["warm-start"]
|
|
||||||
# assert comp.x_train["default"].shape == (8, 6)
|
|
||||||
# assert comp.y_train["default"].shape == (8, 2)
|
|
||||||
# assert ("default", 0) in comp.predictors.keys()
|
|
||||||
# assert ("default", 1) in comp.predictors.keys()
|
|
||||||
@@ -1,88 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from miplearn import KnnWarmStartPredictor
|
|
||||||
from sklearn.metrics import accuracy_score, precision_score
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def test_knn_with_consensus():
|
|
||||||
x_train = np.array([
|
|
||||||
[0.0, 0.0],
|
|
||||||
[0.1, 0.0],
|
|
||||||
[0.0, 0.1],
|
|
||||||
[1.0, 1.0],
|
|
||||||
])
|
|
||||||
y_train = np.array([
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
[1., 0.],
|
|
||||||
])
|
|
||||||
ws = KnnWarmStartPredictor(k=3, thr_clip=[0.75, 0.75])
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
|
|
||||||
x_test = np.array([[0.0, 0.0]])
|
|
||||||
y_test = np.array([[0, 1]])
|
|
||||||
assert (ws.predict(x_test) == y_test).all()
|
|
||||||
|
|
||||||
def test_knn_without_consensus():
|
|
||||||
x_train = np.array([
|
|
||||||
[0.0, 0.0],
|
|
||||||
[0.1, 0.1],
|
|
||||||
[0.9, 0.9],
|
|
||||||
[1.0, 1.0],
|
|
||||||
])
|
|
||||||
y_train = np.array([
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
[1., 0.],
|
|
||||||
[1., 0.],
|
|
||||||
])
|
|
||||||
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
|
|
||||||
x_test = np.array([[0.5, 0.5]])
|
|
||||||
y_test = np.array([[0, 0]])
|
|
||||||
assert (ws.predict(x_test) == y_test).all()
|
|
||||||
|
|
||||||
def test_knn_always_true():
|
|
||||||
x_train = np.array([
|
|
||||||
[0.0, 0.0],
|
|
||||||
[0.1, 0.1],
|
|
||||||
[0.9, 0.9],
|
|
||||||
[1.0, 1.0],
|
|
||||||
])
|
|
||||||
y_train = np.array([
|
|
||||||
[1., 0.],
|
|
||||||
[1., 0.],
|
|
||||||
[1., 0.],
|
|
||||||
[1., 0.],
|
|
||||||
])
|
|
||||||
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
|
|
||||||
x_test = np.array([[0.5, 0.5]])
|
|
||||||
y_test = np.array([[1, 0]])
|
|
||||||
assert (ws.predict(x_test) == y_test).all()
|
|
||||||
|
|
||||||
def test_knn_always_false():
|
|
||||||
x_train = np.array([
|
|
||||||
[0.0, 0.0],
|
|
||||||
[0.1, 0.1],
|
|
||||||
[0.9, 0.9],
|
|
||||||
[1.0, 1.0],
|
|
||||||
])
|
|
||||||
y_train = np.array([
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
[0., 1.],
|
|
||||||
])
|
|
||||||
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
|
|
||||||
x_test = np.array([[0.5, 0.5]])
|
|
||||||
y_test = np.array([[0, 1]])
|
|
||||||
assert (ws.predict(x_test) == y_test).all()
|
|
||||||
@@ -1,64 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from miplearn import LogisticWarmStartPredictor
|
|
||||||
from sklearn.metrics import accuracy_score, precision_score
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def _generate_dataset(ground_truth, n_samples=10_000):
|
|
||||||
x_train = np.random.rand(n_samples,5)
|
|
||||||
x_test = np.random.rand(n_samples,5)
|
|
||||||
y_train = ground_truth(x_train)
|
|
||||||
y_test = ground_truth(x_test)
|
|
||||||
return x_train, y_train, x_test, y_test
|
|
||||||
|
|
||||||
|
|
||||||
def _is_sum_greater_than_two(x):
|
|
||||||
y = (np.sum(x, axis=1) > 2.0).astype(int)
|
|
||||||
return np.vstack([y, 1 - y]).transpose()
|
|
||||||
|
|
||||||
|
|
||||||
def _always_zero(x):
|
|
||||||
y = np.zeros((1, x.shape[0]))
|
|
||||||
return np.vstack([y, 1 - y]).transpose()
|
|
||||||
|
|
||||||
|
|
||||||
def _random_values(x):
|
|
||||||
y = np.random.randint(2, size=x.shape[0])
|
|
||||||
return np.vstack([y, 1 - y]).transpose()
|
|
||||||
|
|
||||||
|
|
||||||
def test_logistic_ws_with_balanced_labels():
|
|
||||||
x_train, y_train, x_test, y_test = _generate_dataset(_is_sum_greater_than_two)
|
|
||||||
ws = LogisticWarmStartPredictor()
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
y_pred = ws.predict(x_test)
|
|
||||||
assert accuracy_score(y_test[:,0], y_pred[:,0]) > 0.99
|
|
||||||
assert accuracy_score(y_test[:,1], y_pred[:,1]) > 0.99
|
|
||||||
|
|
||||||
|
|
||||||
def test_logistic_ws_with_unbalanced_labels():
|
|
||||||
x_train, y_train, x_test, y_test = _generate_dataset(_always_zero)
|
|
||||||
ws = LogisticWarmStartPredictor()
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
y_pred = ws.predict(x_test)
|
|
||||||
assert accuracy_score(y_test[:,0], y_pred[:,0]) == 1.0
|
|
||||||
assert accuracy_score(y_test[:,1], y_pred[:,1]) == 1.0
|
|
||||||
|
|
||||||
|
|
||||||
def test_logistic_ws_with_unpredictable_labels():
|
|
||||||
x_train, y_train, x_test, y_test = _generate_dataset(_random_values)
|
|
||||||
ws = LogisticWarmStartPredictor()
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
y_pred = ws.predict(x_test)
|
|
||||||
assert np.sum(y_pred) == 0
|
|
||||||
|
|
||||||
|
|
||||||
def test_logistic_ws_with_small_sample_size():
|
|
||||||
x_train, y_train, x_test, y_test = _generate_dataset(_random_values, n_samples=3)
|
|
||||||
ws = LogisticWarmStartPredictor()
|
|
||||||
ws.fit(x_train, y_train)
|
|
||||||
y_pred = ws.predict(x_test)
|
|
||||||
assert np.sum(y_pred) == 0
|
|
||||||
@@ -1,366 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from .component import Component
|
|
||||||
from ..extractors import *
|
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from copy import deepcopy
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.pipeline import make_pipeline
|
|
||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.preprocessing import StandardScaler
|
|
||||||
from sklearn.model_selection import cross_val_score
|
|
||||||
from sklearn.metrics import roc_curve
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
|
||||||
from tqdm.auto import tqdm
|
|
||||||
import pyomo.environ as pe
|
|
||||||
import logging
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
class AdaptivePredictor:
|
|
||||||
def __init__(self,
|
|
||||||
predictor=None,
|
|
||||||
min_samples_predict=1,
|
|
||||||
min_samples_cv=100,
|
|
||||||
thr_fix=0.999,
|
|
||||||
thr_alpha=0.50,
|
|
||||||
thr_balance=1.0,
|
|
||||||
):
|
|
||||||
self.min_samples_predict = min_samples_predict
|
|
||||||
self.min_samples_cv = min_samples_cv
|
|
||||||
self.thr_fix = thr_fix
|
|
||||||
self.thr_alpha = thr_alpha
|
|
||||||
self.thr_balance = thr_balance
|
|
||||||
self.predictor_factory = predictor
|
|
||||||
|
|
||||||
def fit(self, x_train, y_train):
|
|
||||||
n_samples = x_train.shape[0]
|
|
||||||
|
|
||||||
# If number of samples is too small, don't predict anything.
|
|
||||||
if n_samples < self.min_samples_predict:
|
|
||||||
logger.debug(" Too few samples (%d); always predicting false" % n_samples)
|
|
||||||
self.predictor = 0
|
|
||||||
return
|
|
||||||
|
|
||||||
# If vast majority of observations are false, always return false.
|
|
||||||
y_train_avg = np.average(y_train)
|
|
||||||
if y_train_avg <= 1.0 - self.thr_fix:
|
|
||||||
logger.debug(" Most samples are negative (%.3f); always returning false" % y_train_avg)
|
|
||||||
self.predictor = 0
|
|
||||||
return
|
|
||||||
|
|
||||||
# If vast majority of observations are true, always return true.
|
|
||||||
if y_train_avg >= self.thr_fix:
|
|
||||||
logger.debug(" Most samples are positive (%.3f); always returning true" % y_train_avg)
|
|
||||||
self.predictor = 1
|
|
||||||
return
|
|
||||||
|
|
||||||
# If classes are too unbalanced, don't predict anything.
|
|
||||||
if y_train_avg < (1 - self.thr_balance) or y_train_avg > self.thr_balance:
|
|
||||||
logger.debug(" Classes are too unbalanced (%.3f); always returning false" % y_train_avg)
|
|
||||||
self.predictor = 0
|
|
||||||
return
|
|
||||||
|
|
||||||
# Select ML model if none is provided
|
|
||||||
if self.predictor_factory is None:
|
|
||||||
if n_samples < 30:
|
|
||||||
self.predictor_factory = KNeighborsClassifier(n_neighbors=n_samples)
|
|
||||||
else:
|
|
||||||
self.predictor_factory = make_pipeline(StandardScaler(), LogisticRegression())
|
|
||||||
|
|
||||||
# Create predictor
|
|
||||||
if callable(self.predictor_factory):
|
|
||||||
pred = self.predictor_factory()
|
|
||||||
else:
|
|
||||||
pred = deepcopy(self.predictor_factory)
|
|
||||||
|
|
||||||
# Skip cross-validation if number of samples is too small
|
|
||||||
if n_samples < self.min_samples_cv:
|
|
||||||
logger.debug(" Too few samples (%d); skipping cross validation" % n_samples)
|
|
||||||
self.predictor = pred
|
|
||||||
self.predictor.fit(x_train, y_train)
|
|
||||||
return
|
|
||||||
|
|
||||||
# Calculate cross-validation score
|
|
||||||
cv_score = np.mean(cross_val_score(pred, x_train, y_train, cv=5))
|
|
||||||
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
|
||||||
cv_thr = 1. * self.thr_alpha + dummy_score * (1 - self.thr_alpha)
|
|
||||||
|
|
||||||
# If cross-validation score is too low, don't predict anything.
|
|
||||||
if cv_score < cv_thr:
|
|
||||||
logger.debug(" Score is too low (%.3f < %.3f); always returning false" % (cv_score, cv_thr))
|
|
||||||
self.predictor = 0
|
|
||||||
else:
|
|
||||||
logger.debug(" Score is acceptable (%.3f > %.3f); training classifier" % (cv_score, cv_thr))
|
|
||||||
self.predictor = pred
|
|
||||||
self.predictor.fit(x_train, y_train)
|
|
||||||
|
|
||||||
def predict_proba(self, x_test):
|
|
||||||
if isinstance(self.predictor, int):
|
|
||||||
y_pred = np.zeros((x_test.shape[0], 2))
|
|
||||||
y_pred[:, self.predictor] = 1.0
|
|
||||||
return y_pred
|
|
||||||
else:
|
|
||||||
return self.predictor.predict_proba(x_test)
|
|
||||||
|
|
||||||
|
|
||||||
class WarmStartComponent(Component):
|
|
||||||
def __init__(self,
|
|
||||||
predictor=AdaptivePredictor(),
|
|
||||||
mode="exact",
|
|
||||||
max_fpr=[0.01, 0.01],
|
|
||||||
min_threshold=[0.75, 0.75],
|
|
||||||
dynamic_thresholds=False,
|
|
||||||
):
|
|
||||||
self.mode = mode
|
|
||||||
self.x_train = {}
|
|
||||||
self.y_train = {}
|
|
||||||
self.predictors = {}
|
|
||||||
self.is_warm_start_available = False
|
|
||||||
self.max_fpr = max_fpr
|
|
||||||
self.min_threshold = min_threshold
|
|
||||||
self.thresholds = {}
|
|
||||||
self.predictor_factory = predictor
|
|
||||||
self.dynamic_thresholds = dynamic_thresholds
|
|
||||||
|
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
|
||||||
# Build x_test
|
|
||||||
x_test = CombinedExtractor([UserFeaturesExtractor(),
|
|
||||||
SolutionExtractor(relaxation=True),
|
|
||||||
]).extract([instance], [model])
|
|
||||||
|
|
||||||
# Update self.x_train
|
|
||||||
self.x_train = Extractor.merge([self.x_train, x_test],
|
|
||||||
vertical=True)
|
|
||||||
|
|
||||||
# Predict solutions
|
|
||||||
count_total, count_fixed = 0, 0
|
|
||||||
var_split = Extractor.split_variables(instance, model)
|
|
||||||
for category in var_split.keys():
|
|
||||||
var_index_pairs = var_split[category]
|
|
||||||
|
|
||||||
# Clear current values
|
|
||||||
for i in range(len(var_index_pairs)):
|
|
||||||
var, index = var_index_pairs[i]
|
|
||||||
var[index].value = None
|
|
||||||
|
|
||||||
# Make predictions
|
|
||||||
for label in [0,1]:
|
|
||||||
if (category, label) not in self.predictors.keys():
|
|
||||||
continue
|
|
||||||
ws = self.predictors[category, label].predict_proba(x_test[category])
|
|
||||||
assert ws.shape == (len(var_index_pairs), 2)
|
|
||||||
for i in range(len(var_index_pairs)):
|
|
||||||
count_total += 1
|
|
||||||
var, index = var_index_pairs[i]
|
|
||||||
logger.debug("%s[%s] ws=%.6f threshold=%.6f" % (var, index, ws[i, 1], self.thresholds[category, label]))
|
|
||||||
if ws[i, 1] > self.thresholds[category, label]:
|
|
||||||
logger.debug("Setting %s[%s] to %d" % (var, index, label))
|
|
||||||
count_fixed += 1
|
|
||||||
if self.mode == "heuristic":
|
|
||||||
var[index].fix(label)
|
|
||||||
if solver.is_persistent:
|
|
||||||
solver.internal_solver.update_var(var[index])
|
|
||||||
else:
|
|
||||||
var[index].value = label
|
|
||||||
self.is_warm_start_available = True
|
|
||||||
|
|
||||||
# Clear current values
|
|
||||||
for i in range(len(var_index_pairs)):
|
|
||||||
var, index = var_index_pairs[i]
|
|
||||||
if var[index].value is None:
|
|
||||||
logger.debug("Variable %s[%s] not set" % (var, index))
|
|
||||||
else:
|
|
||||||
logger.debug("Varible %s[%s] set to %.2f" % (var, index, var[index].value))
|
|
||||||
|
|
||||||
|
|
||||||
logger.info("Setting values for %d variables (out of %d)" % (count_fixed, count_total // 2))
|
|
||||||
|
|
||||||
|
|
||||||
def after_solve(self, solver, instance, model):
|
|
||||||
y_test = SolutionExtractor().extract([instance], [model])
|
|
||||||
self.y_train = Extractor.merge([self.y_train, y_test], vertical=True)
|
|
||||||
|
|
||||||
def fit(self, solver, n_jobs=1):
|
|
||||||
for category in tqdm(self.x_train.keys(), desc="Fit (warm start)"):
|
|
||||||
x_train = self.x_train[category]
|
|
||||||
y_train = self.y_train[category]
|
|
||||||
for label in [0, 1]:
|
|
||||||
logger.debug("Fitting predictors[%s, %s]:" % (category, label))
|
|
||||||
|
|
||||||
if callable(self.predictor_factory):
|
|
||||||
pred = self.predictor_factory(category, label)
|
|
||||||
else:
|
|
||||||
pred = deepcopy(self.predictor_factory)
|
|
||||||
self.predictors[category, label] = pred
|
|
||||||
y = y_train[:, label].astype(int)
|
|
||||||
pred.fit(x_train, y)
|
|
||||||
|
|
||||||
# If y is either always one or always zero, set fixed threshold
|
|
||||||
y_avg = np.average(y)
|
|
||||||
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
|
||||||
self.thresholds[category, label] = self.min_threshold[label]
|
|
||||||
logger.debug(" Setting threshold to %.4f" % self.min_threshold[label])
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Calculate threshold dynamically using ROC curve
|
|
||||||
y_scores = pred.predict_proba(x_train)[:, 1]
|
|
||||||
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
|
||||||
k = 0
|
|
||||||
while True:
|
|
||||||
if (k + 1) > len(fpr):
|
|
||||||
break
|
|
||||||
if fpr[k + 1] > self.max_fpr[label]:
|
|
||||||
break
|
|
||||||
if thresholds[k + 1] < self.min_threshold[label]:
|
|
||||||
break
|
|
||||||
k = k + 1
|
|
||||||
logger.debug(" Setting threshold to %.4f (fpr=%.4f, tpr=%.4f)" % (thresholds[k], fpr[k], tpr[k]))
|
|
||||||
self.thresholds[category, label] = thresholds[k]
|
|
||||||
|
|
||||||
|
|
||||||
def merge(self, other_components):
|
|
||||||
# Merge x_train and y_train
|
|
||||||
keys = set(self.x_train.keys())
|
|
||||||
for comp in other_components:
|
|
||||||
keys = keys.union(set(comp.x_train.keys()))
|
|
||||||
for key in keys:
|
|
||||||
x_train_submatrices = [comp.x_train[key]
|
|
||||||
for comp in other_components
|
|
||||||
if key in comp.x_train.keys()]
|
|
||||||
y_train_submatrices = [comp.y_train[key]
|
|
||||||
for comp in other_components
|
|
||||||
if key in comp.y_train.keys()]
|
|
||||||
if key in self.x_train.keys():
|
|
||||||
x_train_submatrices += [self.x_train[key]]
|
|
||||||
y_train_submatrices += [self.y_train[key]]
|
|
||||||
self.x_train[key] = np.vstack(x_train_submatrices)
|
|
||||||
self.y_train[key] = np.vstack(y_train_submatrices)
|
|
||||||
|
|
||||||
# Merge trained predictors
|
|
||||||
for comp in other_components:
|
|
||||||
for key in comp.predictors.keys():
|
|
||||||
if key not in self.predictors.keys():
|
|
||||||
self.predictors[key] = comp.predictors[key]
|
|
||||||
self.thresholds[key] = comp.thresholds[key]
|
|
||||||
|
|
||||||
|
|
||||||
# Deprecated
|
|
||||||
class WarmStartPredictor(ABC):
|
|
||||||
def __init__(self, thr_clip=[0.50, 0.50]):
|
|
||||||
self.models = [None, None]
|
|
||||||
self.thr_clip = thr_clip
|
|
||||||
|
|
||||||
def fit(self, x_train, y_train):
|
|
||||||
assert isinstance(x_train, np.ndarray)
|
|
||||||
assert isinstance(y_train, np.ndarray)
|
|
||||||
y_train = y_train.astype(int)
|
|
||||||
assert y_train.shape[0] == x_train.shape[0]
|
|
||||||
assert y_train.shape[1] == 2
|
|
||||||
for i in [0,1]:
|
|
||||||
self.models[i] = self._fit(x_train, y_train[:, i], i)
|
|
||||||
|
|
||||||
def predict(self, x_test):
|
|
||||||
assert isinstance(x_test, np.ndarray)
|
|
||||||
y_pred = np.zeros((x_test.shape[0], 2))
|
|
||||||
for i in [0,1]:
|
|
||||||
if isinstance(self.models[i], int):
|
|
||||||
y_pred[:, i] = self.models[i]
|
|
||||||
else:
|
|
||||||
y = self.models[i].predict_proba(x_test)[:,1]
|
|
||||||
y[y < self.thr_clip[i]] = 0.
|
|
||||||
y[y > 0.] = 1.
|
|
||||||
y_pred[:, i] = y
|
|
||||||
return y_pred.astype(int)
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def _fit(self, x_train, y_train, label):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
# Deprecated
|
|
||||||
class LogisticWarmStartPredictor(WarmStartPredictor):
|
|
||||||
def __init__(self,
|
|
||||||
min_samples=100,
|
|
||||||
thr_fix=[0.99, 0.99],
|
|
||||||
thr_balance=[0.80, 0.80],
|
|
||||||
thr_alpha=[0.50, 0.50],
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.min_samples = min_samples
|
|
||||||
self.thr_fix = thr_fix
|
|
||||||
self.thr_balance = thr_balance
|
|
||||||
self.thr_alpha = thr_alpha
|
|
||||||
|
|
||||||
def _fit(self, x_train, y_train, label):
|
|
||||||
y_train_avg = np.average(y_train)
|
|
||||||
|
|
||||||
# If number of samples is too small, don't predict anything.
|
|
||||||
if x_train.shape[0] < self.min_samples:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
# If vast majority of observations are true, always return true.
|
|
||||||
if y_train_avg > self.thr_fix[label]:
|
|
||||||
return 1
|
|
||||||
|
|
||||||
# If dataset is not balanced enough, don't predict anything.
|
|
||||||
if y_train_avg < (1 - self.thr_balance[label]) or y_train_avg > self.thr_balance[label]:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
reg = make_pipeline(StandardScaler(), LogisticRegression())
|
|
||||||
reg_score = np.mean(cross_val_score(reg, x_train, y_train, cv=5))
|
|
||||||
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
|
||||||
reg_thr = 1. * self.thr_alpha[label] + dummy_score * (1 - self.thr_alpha[label])
|
|
||||||
|
|
||||||
# If cross-validation score is too low, don't predict anything.
|
|
||||||
if reg_score < reg_thr:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
reg.fit(x_train, y_train.astype(int))
|
|
||||||
return reg
|
|
||||||
|
|
||||||
|
|
||||||
# Deprecated
|
|
||||||
class KnnWarmStartPredictor(WarmStartPredictor):
|
|
||||||
def __init__(self,
|
|
||||||
k=50,
|
|
||||||
min_samples=1,
|
|
||||||
thr_clip=[0.80, 0.80],
|
|
||||||
thr_fix=[1.0, 1.0],
|
|
||||||
):
|
|
||||||
super().__init__(thr_clip=thr_clip)
|
|
||||||
self.k = k
|
|
||||||
self.thr_fix = thr_fix
|
|
||||||
self.min_samples = min_samples
|
|
||||||
|
|
||||||
def _fit(self, x_train, y_train, label):
|
|
||||||
y_train_avg = np.average(y_train)
|
|
||||||
|
|
||||||
# If number of training samples is too small, don't predict anything.
|
|
||||||
if x_train.shape[0] < self.min_samples:
|
|
||||||
logger.debug("Too few samples; return 0")
|
|
||||||
return 0
|
|
||||||
|
|
||||||
# If vast majority of observations are true, always return true.
|
|
||||||
if y_train_avg >= self.thr_fix[label]:
|
|
||||||
logger.debug("Consensus reached; return 1")
|
|
||||||
return 1
|
|
||||||
|
|
||||||
# If vast majority of observations are false, always return false.
|
|
||||||
if y_train_avg <= (1 - self.thr_fix[label]):
|
|
||||||
logger.debug("Consensus reached; return 0")
|
|
||||||
return 0
|
|
||||||
|
|
||||||
logger.debug("Training classifier...")
|
|
||||||
k = min(self.k, x_train.shape[0])
|
|
||||||
knn = KNeighborsClassifier(n_neighbors=k)
|
|
||||||
knn.fit(x_train, y_train)
|
|
||||||
return knn
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -43,7 +43,7 @@ class Extractor(ABC):
|
|||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
class UserFeaturesExtractor(Extractor):
|
class VariableFeaturesExtractor(Extractor):
|
||||||
def extract(self,
|
def extract(self,
|
||||||
instances,
|
instances,
|
||||||
models=None,
|
models=None,
|
||||||
@@ -62,6 +62,7 @@ class UserFeaturesExtractor(Extractor):
|
|||||||
result[category] += [np.hstack([
|
result[category] += [np.hstack([
|
||||||
instance_features,
|
instance_features,
|
||||||
instance.get_variable_features(var, index),
|
instance.get_variable_features(var, index),
|
||||||
|
instance.lp_solution[str(var)][index],
|
||||||
])]
|
])]
|
||||||
for category in result.keys():
|
for category in result.keys():
|
||||||
result[category] = np.vstack(result[category])
|
result[category] = np.vstack(result[category])
|
||||||
|
|||||||
@@ -91,8 +91,8 @@ class MultiKnapsackInstance(Instance):
|
|||||||
self.weights[:, index],
|
self.weights[:, index],
|
||||||
])
|
])
|
||||||
|
|
||||||
def get_variable_category(self, var, index):
|
# def get_variable_category(self, var, index):
|
||||||
return index
|
# return index
|
||||||
|
|
||||||
|
|
||||||
class MultiKnapsackGenerator:
|
class MultiKnapsackGenerator:
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from . import WarmStartComponent, BranchPriorityComponent, ObjectiveValueComponent
|
from . import ObjectiveValueComponent, PrimalSolutionComponent
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
from pyomo.core import Var
|
from pyomo.core import Var
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
@@ -13,45 +13,87 @@ import logging
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class InternalSolver():
|
class InternalSolver:
|
||||||
def __init__():
|
def __init__(self):
|
||||||
|
self.is_warm_start_available = False
|
||||||
|
self.model = None
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def solve_lp(self, model, tee=False):
|
def solve_lp(self, tee=False):
|
||||||
|
# Relax domain
|
||||||
from pyomo.core.base.set_types import Reals
|
from pyomo.core.base.set_types import Reals
|
||||||
original_domain = {}
|
original_domain = {}
|
||||||
for var in model.component_data_objects(Var):
|
for var in self.model.component_data_objects(Var):
|
||||||
original_domain[str(var)] = var.domain
|
original_domain[str(var)] = var.domain
|
||||||
lb, ub = var.bounds
|
lb, ub = var.bounds
|
||||||
var.setlb(lb)
|
var.setlb(lb)
|
||||||
var.setub(ub)
|
var.setub(ub)
|
||||||
var.domain = Reals
|
var.domain = Reals
|
||||||
self.solver.set_instance(model)
|
|
||||||
results = self.solver.solve(tee=True)
|
# Solve LP relaxation
|
||||||
for var in model.component_data_objects(Var):
|
self.solver.set_instance(self.model)
|
||||||
|
results = self.solver.solve(tee=tee)
|
||||||
|
|
||||||
|
# Restore domains
|
||||||
|
for var in self.model.component_data_objects(Var):
|
||||||
var.domain = original_domain[str(var)]
|
var.domain = original_domain[str(var)]
|
||||||
|
|
||||||
|
# Reload original model
|
||||||
|
self.solver.set_instance(self.model)
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"Optimal value": results["Problem"][0]["Lower bound"],
|
"Optimal value": results["Problem"][0]["Lower bound"],
|
||||||
}
|
}
|
||||||
|
|
||||||
def clear_values(self, model):
|
def clear_values(self):
|
||||||
for var in model.component_objects(Var):
|
for var in self.model.component_objects(Var):
|
||||||
for index in var:
|
for index in var:
|
||||||
var[index].value = None
|
var[index].value = None
|
||||||
|
|
||||||
def get_solution(self, model):
|
def get_solution(self):
|
||||||
solution = {}
|
solution = {}
|
||||||
for var in model.component_objects(Var):
|
for var in self.model.component_objects(Var):
|
||||||
solution[str(var)] = {}
|
solution[str(var)] = {}
|
||||||
for index in var:
|
for index in var:
|
||||||
solution[str(var)][index] = var[index].value
|
solution[str(var)][index] = var[index].value
|
||||||
return solution
|
return solution
|
||||||
|
|
||||||
|
def set_warm_start(self, ws):
|
||||||
|
self.is_warm_start_available = True
|
||||||
|
self.clear_values()
|
||||||
|
count_total, count_fixed = 0, 0
|
||||||
|
for var in ws.keys():
|
||||||
|
for index in var:
|
||||||
|
count_total += 1
|
||||||
|
var[index].value = ws[var][index]
|
||||||
|
if ws[var][index] is not None:
|
||||||
|
count_fixed += 1
|
||||||
|
logger.info("Setting start values for %d variables (out of %d)" %
|
||||||
|
(count_fixed, count_total))
|
||||||
|
|
||||||
|
|
||||||
|
def set_model(self, model):
|
||||||
|
self.model = model
|
||||||
|
self.solver.set_instance(model)
|
||||||
|
|
||||||
|
def fix(self, ws):
|
||||||
|
count_total, count_fixed = 0, 0
|
||||||
|
for var in ws.keys():
|
||||||
|
for index in var:
|
||||||
|
count_total += 1
|
||||||
|
if ws[var][index] is None:
|
||||||
|
continue
|
||||||
|
count_fixed += 1
|
||||||
|
var[index].fix(ws[var][index])
|
||||||
|
self.solver.update_var(var[index])
|
||||||
|
logger.info("Fixing values for %d variables (out of %d)" %
|
||||||
|
(count_fixed, count_total))
|
||||||
|
|
||||||
|
|
||||||
class GurobiSolver(InternalSolver):
|
class GurobiSolver(InternalSolver):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
self.solver = pe.SolverFactory('gurobi_persistent')
|
self.solver = pe.SolverFactory('gurobi_persistent')
|
||||||
#self.solver.options["OutputFlag"] = 0
|
|
||||||
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||||
|
|
||||||
def set_threads(self, threads):
|
def set_threads(self, threads):
|
||||||
@@ -63,9 +105,8 @@ class GurobiSolver(InternalSolver):
|
|||||||
def set_gap_tolerance(self, gap_tolerance):
|
def set_gap_tolerance(self, gap_tolerance):
|
||||||
self.solver.options["MIPGap"] = gap_tolerance
|
self.solver.options["MIPGap"] = gap_tolerance
|
||||||
|
|
||||||
def solve(self, model, tee=False, warmstart=False):
|
def solve(self, tee=False):
|
||||||
self.solver.set_instance(model)
|
results = self.solver.solve(tee=tee, warmstart=self.is_warm_start_available)
|
||||||
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
||||||
return {
|
return {
|
||||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||||
@@ -89,6 +130,7 @@ class GurobiSolver(InternalSolver):
|
|||||||
|
|
||||||
class CPLEXSolver(InternalSolver):
|
class CPLEXSolver(InternalSolver):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
import cplex
|
import cplex
|
||||||
self.solver = pe.SolverFactory('cplex_persistent')
|
self.solver = pe.SolverFactory('cplex_persistent')
|
||||||
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||||
@@ -102,9 +144,8 @@ class CPLEXSolver(InternalSolver):
|
|||||||
def set_gap_tolerance(self, gap_tolerance):
|
def set_gap_tolerance(self, gap_tolerance):
|
||||||
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
||||||
|
|
||||||
def solve(self, model, tee=False, warmstart=False):
|
def solve(self, tee=False):
|
||||||
self.solver.set_instance(model)
|
results = self.solver.solve(tee=tee, warmstart=self.is_warm_start_available)
|
||||||
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
||||||
return {
|
return {
|
||||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||||
@@ -112,9 +153,8 @@ class CPLEXSolver(InternalSolver):
|
|||||||
"Nodes": 1,
|
"Nodes": 1,
|
||||||
}
|
}
|
||||||
|
|
||||||
def solve_lp(self, model, tee=False):
|
def solve_lp(self, tee=False):
|
||||||
import cplex
|
import cplex
|
||||||
self.solver.set_instance(model)
|
|
||||||
lp = self.solver._solver_model
|
lp = self.solver._solver_model
|
||||||
var_types = lp.variables.get_types()
|
var_types = lp.variables.get_types()
|
||||||
n_vars = len(var_types)
|
n_vars = len(var_types)
|
||||||
@@ -156,8 +196,8 @@ class LearningSolver:
|
|||||||
assert isinstance(self.components, dict)
|
assert isinstance(self.components, dict)
|
||||||
else:
|
else:
|
||||||
self.components = {
|
self.components = {
|
||||||
"obj-val": ObjectiveValueComponent(),
|
"ObjectiveValue": ObjectiveValueComponent(),
|
||||||
#"warm-start": WarmStartComponent(),
|
"PrimalSolution": PrimalSolutionComponent(),
|
||||||
}
|
}
|
||||||
|
|
||||||
assert self.mode in ["exact", "heuristic"]
|
assert self.mode in ["exact", "heuristic"]
|
||||||
@@ -189,10 +229,11 @@ class LearningSolver:
|
|||||||
|
|
||||||
self.tee = tee
|
self.tee = tee
|
||||||
self.internal_solver = self._create_internal_solver()
|
self.internal_solver = self._create_internal_solver()
|
||||||
|
self.internal_solver.set_model(model)
|
||||||
|
|
||||||
# Solve LP relaxation
|
# Solve LP relaxation
|
||||||
results = self.internal_solver.solve_lp(model, tee=tee)
|
results = self.internal_solver.solve_lp(tee=tee)
|
||||||
instance.lp_solution = self.internal_solver.get_solution(model)
|
instance.lp_solution = self.internal_solver.get_solution()
|
||||||
instance.lp_value = results["Optimal value"]
|
instance.lp_value = results["Optimal value"]
|
||||||
|
|
||||||
# Invoke before_solve callbacks
|
# Invoke before_solve callbacks
|
||||||
@@ -202,22 +243,13 @@ class LearningSolver:
|
|||||||
if relaxation_only:
|
if relaxation_only:
|
||||||
return results
|
return results
|
||||||
|
|
||||||
# Check if warm start is available
|
|
||||||
is_warm_start_available = False
|
|
||||||
if "warm-start" in self.components.keys():
|
|
||||||
if self.components["warm-start"].is_warm_start_available:
|
|
||||||
is_warm_start_available = True
|
|
||||||
|
|
||||||
# Solver original MIP
|
# Solver original MIP
|
||||||
self.internal_solver.clear_values(model)
|
results = self.internal_solver.solve(tee=tee)
|
||||||
results = self.internal_solver.solve(model,
|
|
||||||
tee=tee,
|
|
||||||
warmstart=is_warm_start_available)
|
|
||||||
|
|
||||||
# Read MIP solution and bounds
|
# Read MIP solution and bounds
|
||||||
instance.lower_bound = results["Lower bound"]
|
instance.lower_bound = results["Lower bound"]
|
||||||
instance.upper_bound = results["Upper bound"]
|
instance.upper_bound = results["Upper bound"]
|
||||||
instance.solution = self.internal_solver.get_solution(model)
|
instance.solution = self.internal_solver.get_solution()
|
||||||
|
|
||||||
# Invoke after_solve callbacks
|
# Invoke after_solve callbacks
|
||||||
for component in self.components.values():
|
for component in self.components.values():
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from miplearn import LearningSolver, BenchmarkRunner, KnnWarmStartPredictor
|
from miplearn import LearningSolver, BenchmarkRunner
|
||||||
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||||
from scipy.stats import randint
|
from scipy.stats import randint
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|||||||
@@ -4,10 +4,10 @@
|
|||||||
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
from miplearn import (LearningSolver,
|
from miplearn import (LearningSolver,
|
||||||
UserFeaturesExtractor,
|
|
||||||
SolutionExtractor,
|
SolutionExtractor,
|
||||||
CombinedExtractor,
|
CombinedExtractor,
|
||||||
InstanceFeaturesExtractor
|
InstanceFeaturesExtractor,
|
||||||
|
VariableFeaturesExtractor,
|
||||||
)
|
)
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
@@ -31,16 +31,6 @@ def _get_instances():
|
|||||||
return instances, models
|
return instances, models
|
||||||
|
|
||||||
|
|
||||||
def test_user_features_extractor():
|
|
||||||
instances, models = _get_instances()
|
|
||||||
extractor = UserFeaturesExtractor()
|
|
||||||
features = extractor.extract(instances)
|
|
||||||
assert isinstance(features, dict)
|
|
||||||
assert "default" in features.keys()
|
|
||||||
assert isinstance(features["default"], np.ndarray)
|
|
||||||
assert features["default"].shape == (6, 4)
|
|
||||||
|
|
||||||
|
|
||||||
def test_solution_extractor():
|
def test_solution_extractor():
|
||||||
instances, models = _get_instances()
|
instances, models = _get_instances()
|
||||||
features = SolutionExtractor().extract(instances, models)
|
features = SolutionExtractor().extract(instances, models)
|
||||||
@@ -60,16 +50,25 @@ def test_solution_extractor():
|
|||||||
|
|
||||||
def test_combined_extractor():
|
def test_combined_extractor():
|
||||||
instances, models = _get_instances()
|
instances, models = _get_instances()
|
||||||
extractor = CombinedExtractor(extractors=[UserFeaturesExtractor(),
|
extractor = CombinedExtractor(extractors=[VariableFeaturesExtractor(),
|
||||||
SolutionExtractor()])
|
SolutionExtractor()])
|
||||||
features = extractor.extract(instances, models)
|
features = extractor.extract(instances, models)
|
||||||
assert isinstance(features, dict)
|
assert isinstance(features, dict)
|
||||||
assert "default" in features.keys()
|
assert "default" in features.keys()
|
||||||
assert isinstance(features["default"], np.ndarray)
|
assert isinstance(features["default"], np.ndarray)
|
||||||
assert features["default"].shape == (6, 6)
|
assert features["default"].shape == (6, 7)
|
||||||
|
|
||||||
|
|
||||||
def test_instance_features_extractor():
|
def test_instance_features_extractor():
|
||||||
instances, models = _get_instances()
|
instances, models = _get_instances()
|
||||||
features = InstanceFeaturesExtractor().extract(instances)
|
features = InstanceFeaturesExtractor().extract(instances)
|
||||||
assert features.shape == (2,3)
|
assert features.shape == (2,3)
|
||||||
|
|
||||||
|
|
||||||
|
def test_variable_features_extractor():
|
||||||
|
instances, models = _get_instances()
|
||||||
|
features = VariableFeaturesExtractor().extract(instances)
|
||||||
|
assert isinstance(features, dict)
|
||||||
|
assert "default" in features
|
||||||
|
assert features["default"].shape == (6,5)
|
||||||
|
|
||||||
@@ -2,7 +2,7 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from miplearn import LearningSolver, BranchPriorityComponent, WarmStartComponent
|
from miplearn import LearningSolver, BranchPriorityComponent
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
|
|
||||||
|
|
||||||
@@ -16,11 +16,13 @@ def _get_instance():
|
|||||||
|
|
||||||
def test_solver():
|
def test_solver():
|
||||||
instance = _get_instance()
|
instance = _get_instance()
|
||||||
|
for mode in ["exact", "heuristic"]:
|
||||||
for internal_solver in ["cplex", "gurobi"]:
|
for internal_solver in ["cplex", "gurobi"]:
|
||||||
solver = LearningSolver(time_limit=300,
|
solver = LearningSolver(time_limit=300,
|
||||||
gap_tolerance=1e-3,
|
gap_tolerance=1e-3,
|
||||||
threads=1,
|
threads=1,
|
||||||
solver=internal_solver,
|
solver=internal_solver,
|
||||||
|
mode=mode,
|
||||||
)
|
)
|
||||||
results = solver.solve(instance)
|
results = solver.solve(instance)
|
||||||
assert instance.solution["x"][0] == 1.0
|
assert instance.solution["x"][0] == 1.0
|
||||||
@@ -40,26 +42,26 @@ def test_solver():
|
|||||||
solver.solve(instance)
|
solver.solve(instance)
|
||||||
|
|
||||||
|
|
||||||
def test_solve_save_load_state():
|
# def test_solve_save_load_state():
|
||||||
instance = _get_instance()
|
# instance = _get_instance()
|
||||||
components_before = {
|
# components_before = {
|
||||||
"warm-start": WarmStartComponent(),
|
# "warm-start": WarmStartComponent(),
|
||||||
}
|
# }
|
||||||
solver = LearningSolver(components=components_before)
|
# solver = LearningSolver(components=components_before)
|
||||||
solver.solve(instance)
|
# solver.solve(instance)
|
||||||
solver.fit()
|
# solver.fit()
|
||||||
solver.save_state("/tmp/knapsack_train.bin")
|
# solver.save_state("/tmp/knapsack_train.bin")
|
||||||
prev_x_train_len = len(solver.components["warm-start"].x_train)
|
# prev_x_train_len = len(solver.components["warm-start"].x_train)
|
||||||
prev_y_train_len = len(solver.components["warm-start"].y_train)
|
# prev_y_train_len = len(solver.components["warm-start"].y_train)
|
||||||
|
|
||||||
components_after = {
|
# components_after = {
|
||||||
"warm-start": WarmStartComponent(),
|
# "warm-start": WarmStartComponent(),
|
||||||
}
|
# }
|
||||||
solver = LearningSolver(components=components_after)
|
# solver = LearningSolver(components=components_after)
|
||||||
solver.load_state("/tmp/knapsack_train.bin")
|
# solver.load_state("/tmp/knapsack_train.bin")
|
||||||
assert len(solver.components.keys()) == 1
|
# assert len(solver.components.keys()) == 1
|
||||||
assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
# assert len(solver.components["warm-start"].x_train) == prev_x_train_len
|
||||||
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
# assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||||
|
|
||||||
|
|
||||||
def test_parallel_solve():
|
def test_parallel_solve():
|
||||||
@@ -67,8 +69,6 @@ def test_parallel_solve():
|
|||||||
solver = LearningSolver()
|
solver = LearningSolver()
|
||||||
results = solver.parallel_solve(instances, n_jobs=3)
|
results = solver.parallel_solve(instances, n_jobs=3)
|
||||||
assert len(results) == 10
|
assert len(results) == 10
|
||||||
# assert len(solver.components["warm-start"].x_train["default"]) == 40
|
|
||||||
# assert len(solver.components["warm-start"].y_train["default"]) == 40
|
|
||||||
for instance in instances:
|
for instance in instances:
|
||||||
assert len(instance.solution["x"].keys()) == 4
|
assert len(instance.solution["x"].keys()) == 4
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user