|
|
@ -83,15 +83,20 @@ def training_instances() -> List[Instance]:
|
|
|
|
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
|
|
|
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
|
|
|
instances[0].samples = [
|
|
|
|
instances[0].samples = [
|
|
|
|
Sample(
|
|
|
|
Sample(
|
|
|
|
after_lp=Features(
|
|
|
|
after_lp=Features(instance=InstanceFeatures()),
|
|
|
|
instance=InstanceFeatures(),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
after_mip=Features(extra={"lazy_enforced": {"c1", "c2"}}),
|
|
|
|
after_mip=Features(extra={"lazy_enforced": {"c1", "c2"}}),
|
|
|
|
)
|
|
|
|
),
|
|
|
|
|
|
|
|
Sample(
|
|
|
|
|
|
|
|
after_lp=Features(instance=InstanceFeatures()),
|
|
|
|
|
|
|
|
after_mip=Features(extra={"lazy_enforced": {"c2", "c3"}}),
|
|
|
|
|
|
|
|
),
|
|
|
|
]
|
|
|
|
]
|
|
|
|
instances[0].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
|
|
|
instances[0].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
|
|
|
return_value=[5.0]
|
|
|
|
return_value=[5.0]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
instances[0].samples[1].after_lp.instance.to_list = Mock( # type: ignore
|
|
|
|
|
|
|
|
return_value=[5.0]
|
|
|
|
|
|
|
|
)
|
|
|
|
instances[0].get_constraint_category = Mock( # type: ignore
|
|
|
|
instances[0].get_constraint_category = Mock( # type: ignore
|
|
|
|
side_effect=lambda cid: {
|
|
|
|
side_effect=lambda cid: {
|
|
|
|
"c1": "type-a",
|
|
|
|
"c1": "type-a",
|
|
|
@ -108,7 +113,30 @@ def training_instances() -> List[Instance]:
|
|
|
|
"c4": [3.0, 4.0],
|
|
|
|
"c4": [3.0, 4.0],
|
|
|
|
}[cid]
|
|
|
|
}[cid]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
instances[1].samples = [
|
|
|
|
|
|
|
|
Sample(
|
|
|
|
|
|
|
|
after_lp=Features(instance=InstanceFeatures()),
|
|
|
|
|
|
|
|
after_mip=Features(extra={"lazy_enforced": {"c3", "c4"}}),
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
instances[1].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
|
|
|
|
|
|
|
return_value=[8.0]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
instances[1].get_constraint_category = Mock( # type: ignore
|
|
|
|
|
|
|
|
side_effect=lambda cid: {
|
|
|
|
|
|
|
|
"c1": None,
|
|
|
|
|
|
|
|
"c2": "type-a",
|
|
|
|
|
|
|
|
"c3": "type-b",
|
|
|
|
|
|
|
|
"c4": "type-b",
|
|
|
|
|
|
|
|
}[cid]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
instances[1].get_constraint_features = Mock( # type: ignore
|
|
|
|
|
|
|
|
side_effect=lambda cid: {
|
|
|
|
|
|
|
|
"c2": [7.0, 8.0, 9.0],
|
|
|
|
|
|
|
|
"c3": [5.0, 6.0],
|
|
|
|
|
|
|
|
"c4": [7.0, 8.0],
|
|
|
|
|
|
|
|
}[cid]
|
|
|
|
|
|
|
|
)
|
|
|
|
return instances
|
|
|
|
return instances
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -131,11 +159,11 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
|
|
|
|
assert_equals(y_actual, y_expected)
|
|
|
|
assert_equals(y_actual, y_expected)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_fit_old(training_instances_old: List[Instance]) -> None:
|
|
|
|
def test_fit(training_instances: List[Instance]) -> None:
|
|
|
|
clf = Mock(spec=Classifier)
|
|
|
|
clf = Mock(spec=Classifier)
|
|
|
|
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
|
|
|
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
|
|
|
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
|
|
|
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
|
|
|
comp.fit_old(training_instances_old)
|
|
|
|
comp.fit(training_instances)
|
|
|
|
assert clf.clone.call_count == 2
|
|
|
|
assert clf.clone.call_count == 2
|
|
|
|
|
|
|
|
|
|
|
|
assert "type-a" in comp.classifiers
|
|
|
|
assert "type-a" in comp.classifiers
|
|
|
@ -145,11 +173,11 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
|
|
|
clf_a.fit.call_args[0][0], # type: ignore
|
|
|
|
clf_a.fit.call_args[0][0], # type: ignore
|
|
|
|
np.array(
|
|
|
|
np.array(
|
|
|
|
[
|
|
|
|
[
|
|
|
|
[50.0, 1.0, 2.0, 3.0],
|
|
|
|
[5.0, 1.0, 2.0, 3.0],
|
|
|
|
[50.0, 4.0, 5.0, 6.0],
|
|
|
|
[5.0, 4.0, 5.0, 6.0],
|
|
|
|
[50.0, 1.0, 2.0, 3.0],
|
|
|
|
[5.0, 1.0, 2.0, 3.0],
|
|
|
|
[50.0, 4.0, 5.0, 6.0],
|
|
|
|
[5.0, 4.0, 5.0, 6.0],
|
|
|
|
[80.0, 7.0, 8.0, 9.0],
|
|
|
|
[8.0, 7.0, 8.0, 9.0],
|
|
|
|
]
|
|
|
|
]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
)
|
|
|
@ -173,12 +201,12 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
|
|
|
clf_b.fit.call_args[0][0], # type: ignore
|
|
|
|
clf_b.fit.call_args[0][0], # type: ignore
|
|
|
|
np.array(
|
|
|
|
np.array(
|
|
|
|
[
|
|
|
|
[
|
|
|
|
[50.0, 1.0, 2.0],
|
|
|
|
[5.0, 1.0, 2.0],
|
|
|
|
[50.0, 3.0, 4.0],
|
|
|
|
[5.0, 3.0, 4.0],
|
|
|
|
[50.0, 1.0, 2.0],
|
|
|
|
[5.0, 1.0, 2.0],
|
|
|
|
[50.0, 3.0, 4.0],
|
|
|
|
[5.0, 3.0, 4.0],
|
|
|
|
[80.0, 5.0, 6.0],
|
|
|
|
[8.0, 5.0, 6.0],
|
|
|
|
[80.0, 7.0, 8.0],
|
|
|
|
[8.0, 7.0, 8.0],
|
|
|
|
]
|
|
|
|
]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
)
|
|
|
@ -197,7 +225,7 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_predict_evaluate_old(training_instances_old: List[Instance]) -> None:
|
|
|
|
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
|
|
|
comp = DynamicLazyConstraintsComponent()
|
|
|
|
comp = DynamicLazyConstraintsComponent()
|
|
|
|
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
|
|
|
|
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
|
|
|
|
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
|
|
|
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
|
|
@ -211,15 +239,14 @@ def test_sample_predict_evaluate_old(training_instances_old: List[Instance]) ->
|
|
|
|
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
|
|
|
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
|
|
|
)
|
|
|
|
)
|
|
|
|
pred = comp.sample_predict(
|
|
|
|
pred = comp.sample_predict(
|
|
|
|
training_instances_old[0],
|
|
|
|
training_instances[0],
|
|
|
|
training_instances_old[0].training_data[0],
|
|
|
|
training_instances[0].samples[0],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
assert pred == ["c1", "c4"]
|
|
|
|
assert pred == ["c1", "c4"]
|
|
|
|
ev = comp.sample_evaluate_old(
|
|
|
|
ev = comp.sample_evaluate(
|
|
|
|
training_instances_old[0],
|
|
|
|
training_instances[0],
|
|
|
|
training_instances_old[0].training_data[0],
|
|
|
|
training_instances[0].samples[0],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
print(ev)
|
|
|
|
|
|
|
|
assert ev == {
|
|
|
|
assert ev == {
|
|
|
|
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
|
|
|
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
|
|
|
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
|
|
|
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
|
|
|